1985, 34, 2

https://doi.org/10.3176/chem.1985.2.04

УДК 662.67:66.060

В. ПЛАТОНОВ, О. КЛЯВИНА, Л. ИВЛЕВА

ИССЛЕДОВАНИЕ СТРУКТУРЫ НЕЙТРАЛЬНЫХ КИСЛОРОДСОДЕРЖАЩИХ СОЕДИНЕНИЙ ПЕРВИЧНОЙ КАМЕННОУГОЛЬНОЙ СМОЛЫ. 2

(Представил И. Клесмент)

В [¹] было показано, что нейтральные кислородсодержащие соединения (НКС) представляют собой сложную многокомпонентную смесь веществ различных классов с алкилированным гидроароматическим или полностью гидрированным скелетом, замещенным фенольными, кетонными, хиноидными, спиртовыми, алкоксильными, сложноэфирными группами, кислород- и азотсодержащими гетероциклами. Узкие фракции НКС, полученные методами экстракции и адсорбционной жидкостной хроматографии, различаются не только молекулярной массой, но и особенностями структуры, содержанием тех или иных функциональных групп.

В целях получения наиболее детальной информации о структуре НКС их узкие фракции были разделены методом препаративной тонкослойной хроматографии (TCX) на концентраты, содержащие по 1—2 соединения, а в отдельных случаях индивидуальные компоненты.

В данном сообщении приводятся результаты исследования структуры соединений, выделенных препаративной ТСХ из CCl₄- и ацетонового экстрактов. ИК-спектры последних приведены на рис. 1.

Рис. 1. ИК-спектры нейтральных кислородсодержащих соединений: CCl₄- (a) и ацетоновый (б) экстракты. Оптимальные условия разделения достигнуты на неактивированных пластинках «Силуфол» (ЧССР) в системах:

- a) ССІ₄-экстракт ацетон—этилацетат—хлороформ—толуол (1:2:2: :5);
- б) ацетоновый экстракт четыреххлористый углерод—ацетон—бензол (2:1:2).

В выбранной системе растворителей из экстрактов нарабатывались узкие фракции, некоторые из которых дополнительно очищались методом TCX. Полученные концентраты (выход 50—100 мг), содержащие по 1—2 основных вещества и менее 10% примесей, изучались методами ИК-, УФ-, ¹Н-ЯМР-спектроскопии, масс-спектрометрии, элементного и функционального анализов, криоскопии по Расту. Отнесение полос в ИК-спектрах проводилось в соответствии с [²⁻⁵].

УФ-спектры углубили представления о строении углеродного скелета (за максимум 220—245 нм ответственны нафталиновые кольца; 245— 260 и 370—380 нм — с «аценовым» типом конденсации; лишь один максимум 245—260 нм — с «феновым» типом конденсации), а также подтвердили наличие хиноидных и кетонных групп, олефиновых двойных связей.

Рис. 2. Гипотетические структурные формулы нейтральных кислородсодержащих соединений первичной каменноугольной смолы (ССІ4-экстракт).

Рис. 3. Гипотетические структурные формулы нейтральных кислородсодержащих соединений первичной каменноугольной смолы (ацетоновый экстракт).

¹Н-ЯМР-спектры, наряду с ИК-спектрами, использовались для оценки степени ароматичности.

Количественное определение идентифицированных функциональных групп проводилось по методикам [^{6, 7}].

В соответствии с данными спектроскопии [^{8, 9}] рассчитывались степень ароматичности узких фракций (табл. 1, 2); индекс конденсации колец, степень разветвления, доля нафтенового и парафинового углерода и другие характеристики структуры в совокупности с величинами молекулярной массы, составом продуктов фрагментации при массспектрометрическом анализе, данными элементного и функционального анализов, качественными химическими реакциями служили основой для построения гипотетических структурных формул соединений концентратов из ацетонового и CCl₄-экстрактов НКС (рис. 2, 3).

Согласно характеристике выделенных концентратов НКС (табл. 1, 2), молекулярная масса компонентов ССІ₄-экстракта изменяется от 160 до 260 у.е.д., содержание углерода — от 66,7 до 93,0, водорода — от 3,9 до 12,8, азота и кислорода — от 0,5 до 27,7 мас. %.

Концентраты включают в себя хиноидные 0,10—1,12, фенольные 0,05—0,91, кетонные 0,02—1,02, алкоксильные 0,28—0,93, спиртовые 0,10—1,00 г-экв/моль группы, кислород и азот в гетероциклах, амино-группу (табл. 1).

Компоненты CCl₄-экстракта НКС представлены структурами из 2—3 конденсированных колец. Наряду с нафтеново-ароматическими и наф-

Tabauya 1

200

I

іх неитральных кислородсодержащих соединении	Молекулярная формула		$\begin{array}{c} C_{12,3}H_{21,2}\\ C_{9,8}H_{9,6}O_{2,9}\\ C_{10,9}H_{4,1}N, O_{0,9}\\ C_{11,1}H_{13,1}N, O_{2,1}\\ C_{13,1}H_{9,5}O_{2,0}\\ C_{13,1}H_{9,5}O_{2,0}\\ C_{13,1}H_{9,5}O_{2,0}\\ C_{13,1}H_{12,1}O_{1,0}\\ C_{10,7}H_{9,0}O_{2,9}\\ C_{10,7}H_{9,0}O_{2,9}\\ C_{10,7}H_{9,0}O_{2,9}\\ C_{10,7}H_{9,0}O_{2,9}\\ C_{12,5}H_{2,1}O_{1,1}\\ C_{13,6}H_{1,1}O_{1,1}\\ C_{13,6}H_{1,1}O_{1,1}\\ C_{13,6}H_{1,1}O_{1,1}\\ C_{13,6}H_{1,1}O_{1,1}\\ C_{13,6}H_{1,1}N_{1,2}O_{2,0}\\ C_{13,6}H_{1,1}N_{1,2}O_{2,0}\\ C_{13,6}H_{1,1}N_{1,2}O_{2,0}\\ C_{14,6}H_{28,8}O_{1,0}\\ C_{14,6}H_{28,8}O_{1,0}\\ C_{14,6}H_{28,8}O_{1,0}\\ C_{16,2}H_{1,13}O_{1,2}\\ C_{16,2}H_{1,2}O_{1,2}\\ C_{16,2}H_{1,2}\\ C$	018,01128,301,0
	Степень арома- тичности		0,1 0,1 0,1 0,1 0,2 0,2 0,1 0,1 0,2 0,2 0,2 0,2 0,1 0,1 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2	2
		ΗИ	$\begin{array}{c} 1,21\\ 0,13\\ 0,098\\ 0,097\\ 0,003\\ 0,$	
		Noch	6.0	Concernance of
первичнь	экв/моль	AL	0,28 0,28 0,28	ALC: UNCONCERNING
стракта	остав, г-	Ощ	0,98 0,98 0,98 0,05 0,05 0,05 0,79	and the second
CUI4-9K	Функциональный с	CL	$\begin{array}{c} 1,00\\ 0,10\\ 0,70\\ 0,70\\ \end{array}$	
нтратов		Kr	$\begin{array}{c c} 0,80\\ 0,024\\ 0$	
их конце		ΦΓ	0,05 0,05 0,80 0,83	
ыделенны		XL	0,10	
ATMBHO B	ocraв,	0, N	27.1 27.1 27.1 27.1 27.1 27.1 27.1 27.1	Tall a start
препара	Элементный со мас. %	Η	$\begin{smallmatrix} 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\$	
еристика		C	87,5 87,5 87,1 87,1 87,1 87,1 80,3 80,3 80,3 80,3 80,3 80,3 79,6 79,6 79,6 79,6 79,6 70,8 80,3 80,3 83,1 70,6 83,1 70,6 83,1 70,6 83,1 70,6 83,1 70,6 83,1 70,6 83,1 70,6 83,1 70,6 83,1 70,6 83,1 70,6 80,0 70,0 80,0 70,0 80,0 70,0 80,0 70,0 7	
Ааракт	Моле- куляр- ная масса		169 170 170 170 170 185 185 185 185 185 185 185 185 185 185	
	Номер	образца	200120110008760787001100001000000000000000000	

— алкоксильные группы, — спиртовые, АГ Условные обозначения: XГ — хиноидные, ФГ — фенольные, КГ — кетонные, СГ Q_и — гетероциклический кислород, ИЧ — иодное число, N_{ови} — азот основный. Tabauya 2

INI	I
ен	I
HH	I
E.	I
õ	I
-	1
KM	1
E	ł
Ka	I
Kd	I
Ie	I
0	I
H	
bo	I
01	I
IC.	l
K	l
×	l
PI	I
PF	I
aJ	I
cb	l
M	
He	
×	
IPI	
H	l
ВИ	1
b	l
E	1
53	
KT	1
pa	
CT	
Ne	
-	
DLC	
BC	
HO	1
LO	
le'	
al	
-	
TO	
33	
L	
(e)	
H	
KO	
-	
PI	
HH	
lei	
le.	
PIN	
B	
0	
BH	
TH	
pa	
Ia	
let	
III	
5	
AK	
L	
H	
ep	
LЖ	
pa	
3	
20	

Молекулярная формула		$\begin{array}{c} C_{13,1}H_{23,4}\\ C_{10,2}H_{10,7}N, 0_{1,18}\\ C_{9,9}H_{11,0}N, 0_{11,3}\\ C_{9,9}H_{11,0}N, 0_{11,3}\\ C_{9,9}H_{11,0}N, 0_{11,3}\\ C_{10,7}H_{21,1}N, 0_{2,2}\\ C_{10,7}H_{21,1}N, 0_{2,2}\\ C_{12,2}H_{23,2}O_{2,1}\\ C_{12,2}H_{23,2}O_{2,1}\\ C_{12,2}H_{23,2}O_{2,1}\\ C_{12,2}H_{23,2}O_{2,1}\\ C_{13,7}H_{10,3}N, 0_{1,7}\\ C_{13,7}H_{10,3}N, 0_{1,7}\\ C_{13,7}H_{10,3}N, 0_{1,7}\\ C_{13,7}H_{10,3}N, 0_{1,7}\\ C_{13,7}H_{10,3}N, 0_{1,7}\\ C_{13,7}H_{23,5}O_{2,0}\\ C_{13,7}H_{23,5}O_{2,0}\\ C_{17,4}H_{25,5}O_{2,0}\\ C_{17,4}H_{25,5}O_{2,0}\\ C_{17,4}H_{25,5}O_{2,0}\\ C_{17,4}H_{25,5}O_{2,0}\\ C_{17,4}H_{25,5}O_{2,0}\\ C_{17,4}H_{25,5}O_{2,0}\\ C_{17,4}H_{25,5}O_{2,0}\\ C_{17,4}H_{25,5}O_{2,0}\\ C_{17,4}H_{25,5}O_{2,0}\\ C_{13,5}H_{20,1}O_{2,3}\\ C_{13,5}H_{23,1}O_{2,3}\\ C_{13,5}H_{23,1}O_{2,2}\\ C_{13,5}H_{23,1}O_{2,0}\\ C_{13,5}H_{2$
Степень арома- тичности		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	NocH	0,39 0,44 0,69 0,30 0,30 0,12 0,12
	CЭГ	0,77 0,77 0,77 0,73 0,73 0,73 0,73 0,73
чиом/	Kr	0,21 0,13 0,71 0,71 0,71
IB, F-9KB	CL	0,81
ый соста	ни	
нональни	AL	0,10
Функи	Оп	0,81 0,81 0,81 0,81 0,11
and a state	ΦΓ	0.92
	XT	0,118 0,922 0,092 0,095 0,955 0,955 0,97
ocraв,	0, N	$\begin{smallmatrix} 10.5 \\ 10.5 \\ 13.6 \\ 13.6 \\ 13.6 \\ 15.9 \\ 15.9 \\ 15.4 \\ 15.9 \\ 15.4 \\ 15.9 \\ 15.4 \\ 15.9 \\ 15.1 $
нтный со мас. %	H	$\begin{array}{c} 13,0\\7,1\\7,1\\7,1\\7,1\\10,5\\10,5\\10,5\\10,5\\10,5\\10,5\\10,5\\10$
Элеме	C	87,0 77,5 75,9 75,9 75,9 77,0 77,0 72,0 72,0 72,0 72,0 72,0 72,0
Молеку-	лярная масса	180 150 150 150 150 170 170 202 202 202 211 200 211 200 225 2260 2255 230 310 310 310 306
Howen	образца	2210 2210 2210 2210 2210 2210 2210 2210

Условные обозначения: СЭГ — сложноэфириые группы; остальные обозначения см. в табл. 1.

теновыми имеются чисто ароматические структуры (рис. 2). Высокие значения иодного числа обеспечивают винильные заместители и терпеновые структуры. Характерной особенностью CCl₄-экстракта является присутствие лактамов и лактонов (рис. 2).

Молекулярная масса компонентов ацетонового экстракта колеблется между 148 и 310 у. ед., содержание углерода от 71,2 до 87,0; водорода от 4.5 до 14.3. азота и кислорода от 6,2 до 22,7 мас. %.

Количество функциональных групп изменяется в следующих пределах: хиноидные 0,09-1,08, фенольные 0,03-0,95, алкоксильные 0,10-0,91, спиртовые 0,13-0,81, кетонные 0,10-0,90, сложноэфирные 0,06-0,88, гетероциклический кислород 0,11-0,84 г-экв/моль.

Компоненты данного экстракта НКС представляют собой структуры, состоящие из 2-4 конденсированных колец. преимущественно гидрированных.

Особенностью ацетонового экстракта является наличие в нем гидроксипиридиновых фрагментов с амфотерными свойствами, отчего при групповом анализе смолы они не извлекаются ни серной кислотой, ни гидроксидом натрия и остаются в нейтральном масле.

Структуры соединений, идентифицированные в составе обсуждаемых экстрактов НКС, позволяют углубить связи между генезисом растительного материала и строением органической массы ископаемых топлив. Наличие терпенов, часто встречающихся в составе смол [10], и оксипиридинов, определяющих состав растительных алкалоидов [11, 12], подтверждает ранее высказанную мысль об участии смол, алкалоидов и пигментов в формировании органической массы топлив.

ЛИТЕРАТУРА

- 1. Платонов В., Клявина О., Ивлева Л. Исследование структуры нейтральных кислородсодержащих соединений первичной каменноугольной смолы. — Изв. АН ЭССР. Хим., 1984, 33, № 1, 15—21.
- 2. Смит А. Прикладная ИК-спектроскопия. М., 1982.
- 3. Наканиси К. Инфракрасные спектры и строение органических соединений. М., 1965.
- Craver, C. D. Desk Book of Infrared Spectra, Coblentz Society, POB 9952. Kirkwood, 1977.
 Jones, R. N. Infrared Spectra of Organic Compounds: Summary Charts of Principal Group Frequencies National Research Council of Canada. Ottawa, 1959.
- 6. Глебко Л. И., Максимов О. Б. Новые методы исследования гуминовых кислот. Владивосток, 1972.
- Сиггиа С., Ханна Дж. Г. Количественный органический анализ по функциональным группам. М., 1983.
 Липницкая Л. Ф. Схема изучения кислородсодержащих соединений битуминоидов и нефтей. Тр. СНИИГГИМСа. Современные методы анализа в органиче-
- ской геохимии, вып. 166. Новосибирск, 1973, 87—97. 9. Розенталь Д. А., Посадов И. А., Попов А. Н., Паукку А. Н. Методы определения и расчета структурных параметров фракций тяжелых нефтяных остатков. Л., 1981
- 10. Генри Т. А. Химия растительных алкалондов. М., 1956.
- 11. Орехов А. П. Химия алкалондов. М., 1955.
- 12. Орехов А. П. Химия алкалондов растений СССР. М., 1965.

Тульский государственный педагогический инститит

Поступила в редакцию _10/XI 1983 После переработки 20/II 1984

KIVISÖE UTTETÖRVA NEUTRAALSETE HAPNIKUÜHENDITE STRUKTUUR. 2

On uuritud kivisõe uttetõrvas sisalduvate neutraalsete hapnikuühendite atsetooni ja CCl4 ekstraktide struktuuri. Kõnealused fraktsioonid sisaldavad fenooli-, kinoidi-, eetri-,

CCl4 ekstraktide struktuuri. Konealused fraktsioonid sisaldavad fenooli-, kinoidi-, eetri-, ketooni-, amino- ja alkoholirühmi ning heterotsüklites hapnikku ja lämmastikku. Ekstraktid on eraldatud õhukese kihi kromatograafia meetodil, neid on uuritud IP-, UV- ja TMR-spektroskoopia, massispektromeetria, krüoskoopia, elemendi- ja funkt-sionaalanalüüsi ning kvalitatiivsete reaktsioonide abil. On esitatud hapnikuühendite atsetooni ja CCl4 ekstraktide oletatavad struktuurivalemid. CCl4 ekstraktides on tuvas-tatud laktaame, laktoone ja terpeene. Estri ja hüdroksüpüridiini derivaadid osutusid atsetooni ekstraktide iseloomustavaimaiks ühendeiks.

V. PLATONOV. O. KLYAVINA. L. IVLEVA

THE STRUCTURE OF NEUTRAL OXYGEN-CONTAINING COMPOUNDS OF PRIMARY COAL TARS, 2

The structure of the acetone and CCl4 extracts of neutral oxygen-containing compounds of primary coal tars was investigated. The fractions proved to contain phenol, chinoid,

ether, ester, ketone, amino and alcohol groups, oxygen and nitrogen in heterocycles. Two extracts were separated by preparative thin-layer chromatography. Isolated compounds were examined by the methods of IR-, UV-, NMR-spectroscopy, mass spectrometry, cryoscopy, routine and functional analysis and by qualitative reactions. Presumable structural formulas for the compounds of the acetone and CCl₄ extracts have been derived. In the CCl₄ extracts lactams, lactones and terpenes were identified. The ester and hydroxypyridine derivatives represented the most characteristic compounds of the acetone extracts.