EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. КЕЕМIA ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ХИМИЯ PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE ESTONIAN SSR. CHEMISTRY

1985, 34, 2

УДК 662.736: 543 42

Я. АРРО, Эда ГРЮНЕР

ИССЛЕДОВАНИЕ ТЯЖЕЛОЙ СМОЛЫ ПОЛУКОКСОВАНИЯ СЛАНЦА-КУКЕРСИТА

5. СТРУКТУРНАЯ ХАРАКТЕРИСТИКА СУММАРНОЙ СМОЛЫ МЕТОДОМ СПЕКТРОСКОПИИ ЯМР ¹Н И ¹³С

(Представил О. Эйзен)

Результаты предыдущих работ [^{1–4}] показали, что поведение тяжелой сланцевой смолы при разделении определяется в основном углеводородной структурой ее составляющих и лишь незначительно характером кислородсодержащих групп. По этой причине методами жидкостной адсорбционной хроматографии невозможно разделить тяжелую смолу на четкие группы соединений и, следовательно, исследовать ее состав. В то же время благодаря достижениям спектроскопии ЯМР удается довольно точно оценить распределение различных атомов по структурным элементам в очень сложных смесях. Ясно, что в случае тяжелой сланцевой смолы достаточно выяснить такое распределение прежде всего для атомов водорода и углерода. В настоящей работе сделана попытка качественной и количественной интерпретации спектров ЯМР ¹Н и ¹³С тяжелой смолы полукоксования сланца-кукерсита.

Экспериментальная часть

Исследуемая смола получена полукоксованием сланца-кукерсита (из пласта В) в лабораторной алюминиевой реторте. Перед нагреванием всю систему продували аргоном, а процесс полукоксования проводили под умеренным вакуумом, который обеспечивал водоструйный насос. Смолу обезвоживали нагреванием под вакуумом в течение 20 мин до 75 °C. Из 46,3 г сланца получили 24,7 г полукокса и 10,5 г смолы с началом кипения около 250°. Часть исходной смолы обрабатывали гидразином по методу Хуанг-Минлона [5]. Выход смолы после восстановления карбонильных соединений составлял 86% (резорцины частично переходили в водную фазу). Характеристики обеих смол приведены в табл. 1.

Спектры ЯМР ¹Н и ¹³С (полная развязка от протонов, импульсы длительностью 9 мкс с интервалом 25 с) снимали при комнатной тем-

Таблица 1

Смола	С	Н	N	0	Феноль- ный О	Карбо- нильный О
Исходная	82,9	9,4	0,8	7,7	5,7	1,2
Восстановленная	83,4	9,6		6,2	4,3	0,5

Элементный состав смолы полукоксования сланца-кукерсита, %

2 ENSV TA Toimetised. K 2 1985

93

пературе на спектрометрах BS 487С (80 МГц) фирмы «Tesla» (ЧССР) и AM-500 (125 МГц) фирмы «Bruker» (ФРГ) соответственно.* В качестве растворителя использовали CDCl₃, и химические сдвиги ядер ¹Н и ¹³С измеряли относительно внутреннего стандарта тетраметилсилана. Элементный состав исследовали на анализаторе 186 CNH фирмы «Hewlett Packard» (США). Содержание фенольного гидроксила и карбонильных групп определяли по методике из [⁶], а среднюю молекулярную массу смолы — методом парофазной осмометрии в бензоле. Последняя оказалась равной 350 для обеих смол.

Результаты и обсуждение

Интерпретацию спектров ¹Н тяжелой сланцевой смолы проводили аналогично [⁷], а при истолковании спектров ¹³С использовали данные из [^{8, 9}].

В спектре ЯМР ¹³С (рисунок) на фоне неразрешенного спектра в области химических сдвигов 0—50 м. д. явно видны резонансные сигналы при 14,1, 22,7, 29,5, 29,8 и 32,0 м. д., которые, вероятно, принадлежат атомам углерода в алифатической цепи. Сигналы 42,9 и 43,5 м. д. можно интерпретировать как соответствующие атомам углерода в а-положении от карбонильной группы в алифатических кетонах. В пользу этого вывода говорит отсутствие этих линий в спектре восстановленной смолы.

В ароматической области спектра (100—160 м. д.) четко видны интенсивные линии при 100,6, 108,0 и 156,9 м. д., которые практически совпадают с химическими сдвигами атомов углерода в 5-метилрезорцине [¹⁰]. Отношение интенсивностей также находится в согласии с числом соответствующих атомов углерода в молекуле 5-метилрезорцина. Однако отсутствие явного сигнала углерода, связанного с метильной группой (C_5), указывает на то, что перечисленные сигналы следует приписать 5-алкилрезорцинам. В спектре восстановленной смолы также проявляются все указанные сигналы, исключая сигнал при 100,6 м. д. Очевидно, в 5-алкилрезорцинах, которые остались в обработанной смоле, водород у атома C_2 также замещен алкильной группой. Сигна-

^{*} Авторы благодарят М. Коэля и Ю. Ярвета за снятие спектров.

Таблица 2

Распределение протонов по структурным элементам тяжелой сланцевой смолы согласно спектру ЯМР ¹Н. %

		and and a state of the	
Тип протона	Область хими- ческих сдвигов, м. д.	Тяжелая сланце- вая смола	Восста- новлен- ная смола
Протоны в ароматических соединениях (H _A) в том числе:	6,5—9,0	7,7	9,4
в полиароматических в моноароматических	7,05—9,0 6,5—7,05	4,4 3,3	6,0 3,4
Протоны в насыщенных соединениях (Нн) в том числе:	0,5—4,0	82,7	81,6
в концевых группах CH ₃	0,5—1,1	17,9	16,6
в алифатической цепи (Нц) в группах СН ₃ рядом с ароматическим ядром в группах СН ₄ и СН ₂ рядом с ароматическим	1,2-2,0 2,0-2,4	36,2 10,3	37,2 8,5
ядром в мостиковых метиленовых группах (Нм)	2,4-3,2 3,2-4,0	10,8 2,1	11,6 3,4
Протоны ненасыщенной связи (Н _{нн}) (в алкеновых группах)	4,7-5,8	4,4	4,2

Таблица 3

Распределение атомов углерода по структурным элементам тяжелой сланцевой смолы согласно спектру ЯМР ¹³С, %

Тип атома углерода	Область хими- ческих сдвигов, м. д.	Тяжелая сланце- вая смола	Восста- новлен- ная смола
В ароматическом кольце (СА)	100—160	29,9*	25,3*
носители фенольного гидроксила (СФ) В алифатических углеводородах (Сн) в том инсле:	150—160 8—50	4,4 64,8	3,2 69,7
в длинных алифатических цепях С ₁ С ₂ С ₃ С ₄ С х	$13,5-14,7 \\ 22,3-23,2 \\ 31,6-32,5 \\ 28,6-30,4$	4,1 3,6 3,5 13,4	4,9 4,3 5,0 15,5
У двойной связи в 1-алкенах (Снн)	114,1 и 139,1	1,4	0,8

* Содержание углерода в алкеновых группах высчитано по формуле $\frac{12H_{9}}{C_{9}}$ Нин $-\frac{1}{2}$ Син, где Н_а и С_а — процентное содержание водорода и углерода в смоле соответственно.

лы при 114,1 и 139,1 м. д., по всей вероятности, относятся к углеродам C1 и C2 в алифатических 1-алкенах. Присутствие в исследуемой смоле 1-алкенов подтверждают и газохроматографические методы. Обнаруживаются также линии, соответствующие резонансным сигналам углерода в других алкенах, но их доля незначительна и трудно идентифицируема.

Количественный анализ спектров ЯМР исследуемых смол показывает, что приблизительно четверть всех атомов углерода относится к ароматическим, а основная доля остальных входит в состав насыщенных соединений (см. табл. 2 и 3). Такое распределение хорошо согласуется с результатами исследований тяжелого остатка генераторной смолы [11]. Но более подробный анализ спектров указывает на ряд особенностей в структуре тяжелой сланцевой смолы. Как следует из

2*

Таблица 4

Некоторые	параметры	структурных	групп	тяжелой	сланцевой	смолы,
	определенны	е на основе	спектро	В ЯМР 1	Ни 13С	

Показатель		Восста- новлен- ная смола
Атомное соотношение водорода и углерода (по элементному анализу 12H ₉ /C ₉ =Q)	1,36	1,38
Среднее число атомов водорода у алифатического углерода $Q \cdot H_{\rm H}/C_{\rm H}$	1,74	1,62
Среднее число атомов водорода у алифатического углерода в длинных цепях $Q \cdot H_{II}/(C_2 + C_3 + C_N)$	2,40	2,07
Среднее число атомов углерода в алифатических заместителях $1+(C_1\!+\!C_2\!+\!C_3\!+\!C_N)/C_1$	7,0	7,1
Доля незамещенных ароматических водородов Q·H _A /C _A	0,35	0,51
Доля носителей фенольного гидроксила Сф/СА	0,15	0,13
Доля углерода в мостиковых метиленовых группах 0,005Q·H _M	0,014	0,023

габл. 4, в насыщенных углеводородах отношение числа атомов водорода и углерода в среднем меньше двух, что говорит о присутствии соединений с конденсированными насыщенными циклами. Обращает на себя внимание тот факт, что интегральные интенсивности сигналов, соответствующие алифатическим атомам С1, С2 и С3, практически одинаковы. Это явно свидетельствует о том, что последние являются звеньями длинных неразветвленных алкильных цепей. Так как в алифатических углеводородах исследуемой смолы находится не более 4% углерода (определено методом тонкослойной хроматографии на Al_2O_3), то основная часть длинных алкильных цепей должна представлять собой радикалы, содержащие в среднем по семи атомов углерода. Однако рассчитанное соотношение числа атомов водорода и углерода для этих радикалов (без учета концевых групп) выше двух, хотя в восстановленной смоле оно приближается к двум. Такой результат объясняется, очевидно, тем, что при определении указанного соотношения учтена интегральная интенсивность резонансных сигналов всех атомов водорода в алкильных цепях, в то время как из спектра ЯМР ¹³С выделены сигналы только тех атомов углерода, которые находятся в длинных алкильных цепях. Таким образом, можно предполагать, что коротких и разветвленных алкильных заместителей в восстановленной смоле меньше, чем в исходной.

На усредненную молекулу тяжелой смолы приходится более семи ароматических атомов углерода, т. е. более одного ароматического ядра. При этом в ароматическом кольце в среднем четыре атома водорода замещены другими группами, в том числе одно место занимает гидроксил. Таким образом, большинство заместителей присоединены к ароматическому ядру посредством С—С-связи. Такая высокая степень замещения ароматических соединений углеводородными радикалами в тяжелой сланцевой смоле наблюдалась и ранее. Так, в продуктах окисления тяжелой суммарной смолы [²] идентифицированы различные бензолкарбоновые кислоты (даже с шестью карбоксильными группами), причем преимущественно в положениях 1, 2; 1, 2, 3 и 1, 2, 4. Содержание метиленовых мостиков между ароматическими кольцами незначительное, однако в восстановленной смоле их гораздо больше. Возможно, что метиленовые мостики дополнительно образовались из ароматических кетонов (напр., из бензофенонов).

Полученные данные показывают, что в тяжелой сланцевой смоле

основу углеводородного скелета составляет ароматическое ядро, в котором большинство атомов водорода замещено другими группами. Среди углеводородных заместителей преобладают длинные алкильные цепи. Указанные элементы углеводородного скелета включают в себя половину углерода тяжелой сланцевой смолы.

ЛИТЕРАТУРА

- Арро Я., Грюнер Э., Кивиряхк С., Клесмент И., Куузик М., Линдару Э. Исследование тяжелой смолы полукоксования сланца-кукерсита. 1. Вопросы разделения суммарной смолы. Изв. АН ЭССР. Хим., 1983, 32, № 3, 195—201.
 Побуль Л., Клесмент И., Арро Я. Исследование тяжелой смолы полукоксования сланца-кукерсита. 2. Окисление перманганатом калия. Изв. АН ЭССР. Хим., 1983, 32, № 3, 202—207.
 Напад И. Клесмент И. Винк Н. Исследование тяжелой смолы полукоксования сланца-кукерсита. 4. Винк Н. Исследование тяжелой смолы полукоксования сланца-кукерсита. 8. Винк Н. Исследование тяжелой смолы полукоксования сланца-кукерсита. 9. Винк Н. Исследование тажелой смолы полукоксования сланца-кукерсита. 9. Винк Н. Исследование тажелой смолы полукоксования сланца в Класнение и Винк Н. Исследование тажелой смолы полукоксования сланца-кукерсита. 9. Винк Н. Исследование тажелой смолы полукоксования сланца-кукерсита. 9. Винк Н. Исследование тажелой смолы полукоксования сланца в Класнение и Винк Н. Исследование тажелой смолы полукоксования сланца в Класнение и Винк Н. Исследование тажелой смолы полукоксования в Класнение в Класнение полукоксования слания. Изв. АН ЭССР. Хим., 1983, 32, № 3, 202—207.
- Наппа Л., Клесмент И., Винк Н. Исследование тяжелой смолы полукоксования сланца-кукерсита. З. Гидрогенизация и конверсия. Изв. АН ЭССР. Хим., 1983, 32, № 3, 208—214.
- 4. Арро Я., Грюнер Э. Исследование тяжелой смолы полукоксования сланца-кукерсита. 4. Разделение нейтральных кислородных соединений на группы. — Изв.
- АН ЭССР. Хим., 1984, 33, № 1, 22—27. *Ниаng-Minlon*, A simple modification of the Wolff—Kishner reduction. J. Amer. Chem. Soc., 1964, 68, N 12, 2487—2488. *Грюнер Э. Г., Михкельсон В. Я., Арро Я. В.* Количественное определение кар-
- бонильной группы и фенольного гидроксила в сланцевой смоле. Инф. бюл. «Горючие сланцы», 1982, вып. 5, 10-15.
- Bodzek, D., Krzyzanowska, T., Marzec, A. Heterocompounds present in asphaltenes from various products of coal hydrogenation. Fuel, 1979, 58, N 3, 196—202.
 Johnson, L. F., Jankowski, W. C. Carbon-13 NMR Spectra. New York, 1972.
- 9. Леви Г., Нельсон Г. Руководство по ядерному магнитному резонансу углерода-13 для химиков-органиков. М., 1975. 10. Липпмаа Х. В., Пехк Т. И., Кийслер К. Р., Кристьянсон П. Г. Исследование
- структуры фенолформальдегидных поликонденсированных смол спектроскопи-ческими методами. Сообщение II. Поликонденсаты резорцина и 5-метилре-зорцина и влияние прибавки капролактама на их структуру. Тр. Таллин. политехн. ин-та, 1974, № 356, 93-106.
- 11. Лилле Ю., Пехк Т., Пурре Т., Биттер Л. Исследование структуры тяжелой слан-цевой смолы методом ЯМР-спектроскопии. Изв. АН ЭССР. Хим. Геол., 1973, 22, № 1, 17-25.

Инститит химии Академии наук Эстонской ССР Поступила в редакцию 13/VII 1984

J. ARRO, Eda GRÜNER

KUKERSIIDI RASKE UTTEÕLI UURIMINE

5. Summaarse õli iseloomustamine ¹H ja ¹³C tuumamagnetresonantsspektroskoopia meetodil

Töös on kasutatud 1H ja 13C tuumamagnetresonantsspektroskoopiat kukersiidi raskes utteolis leiduvate tähtsamate struktuurielementide väljaselgitamiseks. On leitud, et ena-mik süsinikust ja vesinikust on küllastatud ühendite koosseisus, kus ülekaalus on pikad alküülahelad. Umbes veerand süsinikust on aromaatse iseloomuga, kusjuures aromaat-ses tuumas on keskmiselt neli vesiniku aatomit asendatud mõne teise grupiga. Töö tulemused annavad alust oletada küllastunud kondenseerunud tuumadega ühendite olemasolu kukersiidi raskeõlis.

J. ARRO, Eda GRÜNER

INVESTIGATION OF HEAVY SEMICOKING OIL OF KUKERSITE SHALE

5. Structural characterization of total oil by NMR ¹H and ¹³C spectroscopy

Average concentration of some hydrogen and carbon atoms are calculated on the ground of ⁴H and ⁴³C NMR spectra. The majority of the carbon atoms were found in saturated hydrocarbons and about 25% in aromatic rings. On the average, four out of six hydrogens in the aromatic rings were substituted. The presence of condensed saturated cyclic compounds is presumed.