1985, 34, 2

https://doi.org/10.3176/chem.1985.2.02

УДК 662.749.41

# Линда ПОБУЛЬ, И. КЛЕСМЕНТ, Я. АРРО

# состав фенолов тяжелой сланцевой смолы

## 3. РЕЗУЛЬТАТЫ ОКИСЛЕНИЯ СУММАРНЫХ ФЕНОЛОВ

Как известно, при окислении ароматических углеводородов перманганатом калия циклические структуры сохраняют стабильность. Другое дело, если ароматическое кольцо связано с гидроксильными или эфирными группами, — тогда расщепляется и ароматическая структура [1]. Боковые алифатические цепи, связанные с ядром непосредственно или через кислородный мостик, окисляются в алифатические монокарбоновые кислоты. Предполагается, что алифатические дикарбоновые кислоты образуются из цепей, оба конца которых связаны с вышеуказанными структурными элементами. Алкилароматические углеводороды, а также полициклические фенолы и эфиры, наоборот, окисляются в ароматические кислоты. Таким образом, исследование продуктов окисления ароматических соединений, в частности фенолов сланцевой смолы, может дать много ценной информации о составе анализируемой смеси. Большинство работ в этой области посвящено окислению фено-лов кислородом воздуха [<sup>2</sup>]. Только в [<sup>3</sup>] продукты окисления фенолов тяжелой сланцевой смолы исследовались перманганатом калия. При этом были идентифицированы алифатические монокарбоновые (С3-С7) и дикарбоновые (C<sub>4</sub>—C<sub>6</sub>) кислоты, а из ароматических — лишь фта-левая и тримеллитовая. Так как в [<sup>3</sup>] состав образующихся кислот количественно не анализировался, то трудно делать какие-либо серьезные выводы о структуре возможных ароматических оксисоединений. Поэтому такого рода исследования целесообразно повторить, тем более что в последнее время достигнут значительный успех в анализе карбоновых кислот, в частности бензолкарбоновых, методом ГЖХ. В свете вышесказанного, нами при исследовании фенолов тяжелой сланцевой смолы методом окисления особое внимание уделялось анализу продуктов окисления.

### Экспериментальная часть

В качестве исследуемых веществ брали суммарные фенолы, выделенные из генераторной смолы нолукоксования сланца-кукерсита, а также четыре дистиллированные из них фракции. При остаточном давлении  $10^{-2}-10^{-3}$  мм рт. ст. фракции фенолов имели следующие температуры кипения: 1) до 100 °C (300° при 760 мм рт. ст.), 2) 100-150°; 3) 150-200°; 4) 200-250°. Общий выход дистиллята составил 71%. Подробная характеристика фенолов будет представлена в дальнейших работах. Методика окисления взята из [4]. Суммарные фенолы окисляли при температурах 95 и 20°, а фракции фенолов — только при 20°. Продукты окисления экстрагировали из водного раствора гексаном (экстрагирует в основном монокарбоновые кислоты) и этиловым эфиром. Оставшийся после этого раствор упаривали досуха, и остаток еще раз экстрагировали эфиром и ацетоном. Оба эфирных экстракта анализировали вместе. Количество щавелевой кислоты определяли химическими методами, поскольку она экстрагируется из водного раствора не полностью. Для этого щавелевую кислоту выделяли из раствора в виде кальциевой соли, разлагали эту соль серной кислотой и определяли количество свободной щавелевой кислоты титрованием раствора перманганатом калия. Содержание двуокиси углерода в продуктах окисления измеряли волюметрически.

Органические кислоты в виде их метиловых эфиров анализировали газохроматографически на приборе «Хром-4» с пламенно-ионизационным детектором на двух колонках из нержавеющей стали.

При количественном анализе алифатических дикарбоновых и ароматических кислот в качестве внутреннего стандарта применяли себациновую кислоту. Калибровочные коэффициенты для перевода высот хроматографических пиков в весовые проценты идентифицированных карбоновых кислот определяли из хроматограмм эталонных смесей.

# Результаты и обсуждение

Из проведенных экспериментов (табл. 1-3, рис. 1-3) следует, что выход и состав продуктов окисления сланцевых фенолов зависят как от температуры окисления, так и от состава фенольных фракций. Различны также выходы двуокиси углерода (от 13,6 до 51%) и щавелевой кислоты (от 6 до 30%). Между количествами этих соединений существует обратная зависимость — высокому выходу щавелевой кислоты соответствует низкий выход двуокиси углерода (см. табл. 2). При этом характерно, что доля углерода исходного вещества, переходящая в эти соединения, во всех опытах относительно постоянна: при окислении суммарных фенолов 51-57%, а при окислении фракций фенолов 37-50%. Это значит, что около половины исходного углерода сохраняет устойчивость при окислении перманганатом калия и превращается в карбоновые кислоты. Интересно отметить, что при окислении суммарных фенолов выходы кислот (экстрактов) почти такие же, как и при окислении суммарной сланцевой смолы [4], хотя следовало бы ожидать большего образования двуокиси углерода и щавелевой кислоты. Заниженные выходы последних обусловлены, по-видимому, различной

Таблица 1

| Исходное<br>вещество  | С                            | Н                        | Гексановый<br>экстракт         |                              | Эфирный<br>экстракт         |                              |                              | Ацетоновый<br>экстракт   |                              |                              | Выход,<br>% на           |                        |
|-----------------------|------------------------------|--------------------------|--------------------------------|------------------------------|-----------------------------|------------------------------|------------------------------|--------------------------|------------------------------|------------------------------|--------------------------|------------------------|
|                       |                              |                          | вы-<br>ход,<br>г               | С                            | Н                           | вы-<br>ход,<br>г             | С                            | Н                        | вы-<br>ход,<br>г             | С                            | Н                        | исходное<br>вещество   |
| Суммарные<br>фенолы * | 74,6<br>74,6                 | 7,9<br>7,9               | 0,36                           | 67,3                         |                             | 1,80                         |                              |                          | 2,50**<br>1,13               | 27,0<br>24,8                 | 2,0<br>3,5               | 68<br>81               |
| 1<br>2<br>3<br>4      | 71,9<br>71,4<br>77,5<br>77,4 | 7,5<br>8,0<br>9,0<br>8,8 | $0,12 \\ 0,21 \\ 0,46 \\ 0,62$ | 69,8<br>63,7<br>69,2<br>65,9 | 9,4<br>10,4<br>11,3<br>10,6 | 1,25<br>1,20<br>1,78<br>2,07 | 51,2<br>46,4<br>45,1<br>57,3 | 4,9<br>5,4<br>5,5<br>7,3 | 0,82<br>1,94<br>1,80<br>0,72 | 26,1<br>25,5<br>25,0<br>25,5 | 3,7<br>3,3<br>3,2<br>3,3 | 63<br>100<br>111<br>95 |

| Выход | И   | элем | ентный  | состав  | (%)  | продун | TOB | окисления |
|-------|-----|------|---------|---------|------|--------|-----|-----------|
| фе    | ено | лов  | тяжелой | і сланц | евой | смолы  | при | 20 °C     |

\* При 95°.

\*\* Эфирный и ацетоновый экстракты анализировались вместе.

86



Рис. 1. Состав *н*-алкановых монокарбоновых кислот — продуктов окисления сланцевых фенолов. Исходное вещество для окисления: 1—4 — соответствующие дистилляты, 5 — суммарные фенолы.

температурой окисления, которая для суммарной смолы составляла 30°, а для суммарных фенолов — 20°.

В ходе подготовки проб органических кислот для хроматографии (отгонка растворителя, получение метиловых эфиров и др.) наиболее летучие кислоты испарялись. Поэтому на хроматограммах обнаруживаются кислоты только выше пропионовой. Это также объясняет большие расхождения в балансе углерода (табл. 2).

Продукты окисления как суммарных фенолов, так и их дистиллятных фракций при 20° содержат алифатические монокарбоновые

Таблица 2

| Исходное<br>вещество                      | Гексановый<br>экстракт | Эфирный<br>экстракт  | Ацетоновый<br>экстракт                | Щавелевая<br>кислота | Двуокись<br>углерода | Bcero                | Идентифи-<br>цированные<br>кислоты |
|-------------------------------------------|------------------------|----------------------|---------------------------------------|----------------------|----------------------|----------------------|------------------------------------|
| Суммарные фено-<br>лы *<br>Фракции "<br>1 |                        | 30,7<br>25,6         | 22,3 (3,9) **<br>9,3 (1,8)<br>8,6 (0) | 6<br>24,5<br>27,6    | 51<br>26,4<br>13,6   | 60,9<br>91,4<br>70,2 | 9,9<br>45,3<br>35,1                |
| 2<br>3<br>4                               | 5,6<br>11,3<br>14,7    | 23,2<br>28,6<br>42,8 | 20,6 (0)<br>16,0 (0)<br>6,6 (0,6)     | 30,0<br>20,3<br>13,7 | 20,0<br>16,4<br>27,3 | 78,8<br>76,6<br>99,1 | 41,2<br>40,0<br>37,3               |

Распределение углерода по продуктам окисления фенолов тяжелой сланцевой смолы при 20 °С, %

\* При 95°.

\*\* В скобках указана доля углерода исходного вещества, содержащаяся в идентифицированных кислотах (исключая щавелевую).



Рис. 2. Состав *н*-алкановых дикарбоновых кислот — продуктов окисления сланцевых фенолов. Исходное вещество для окисления: 1—4 соответствующие дистилляты, 5 суммарные фенолы.

(С4-С18) и дикарбоновые кислоты (С4-С14), а также бензолкарбоновые (см. рис. 1-3). В продуктах окисления фенолов при 95°, однако, обнарутолько бензолкарживаются боновые кислоты. С повышением температуры кипения фенолов увеличивается также число атомов углерода в цепи алифатических кислот. При окислении фенолов, перегоняющихся ниже 300°, получаются значительных количествах R монокарбоновые кислоты до С10 и дикарбоновые кислоты до С8. Но при окислении фенолов 4-й фракции (самой высококипящей) образуются монокарбоновые кислоты до С18 с преобладанием С7, С12, С16 и С<sub>18</sub> (см. рис. 1). Дикарбоновые кислоты имеют в молекуле до 14 атомов углерода с максимальным содержанием С8.

Если при окислении суммарных фенолов количества идентифицированных моно- и дикарбоновых кислот почти одинаковы, то в продуктах окисления фракций фенолов первые заметно преобладают над вторыми. И все же общее количество установленных алифатических структур остается низким (особенно при окислении низкокипящих фенолов) — не более 20% (см. табл. 3). Здесь, очевидно, определенную роль играет летучесть некоторых продуктов окисления.

С повышением температуры перегонки фенолов количество устойчивых к окислению ароматических структур падает (см. табл. 3). Учитывая достоверное наличие полициклических соединений в высококипящих фракциях, следовало бы ожидать обратную картину. В то же время при окислении дистиллятных фракций с повышением температуры их перегонки наблюдается также повышение выхода гексанового экстракта, т. е. монокарбоновых кислот (см. табл. 2). Это указывает на увеличение доли алифатических цепей (возможно, и полициклических фенолов) в высококипящих фракциях. Из результатов [<sup>5</sup>] следует, что эти фенолы должны быть в основном одноатомными.

Хроматограммы кислот, полученные при окислении суммарных фенолов, весьма похожи на хроматограммы продуктов окисления суммарной смолы [4]. Только в случае окисления фенолов из монокарбоновых кислот преобладают  $C_7$ — $C_9$ , а содержание кислот выше  $C_{12}$  уже незначительно. При окислении же суммарной смолы образуется относительно много кислот  $C_9$ — $C_{18}$ . Распределение монокарбоновых кислот, полученных при окислении 4-й фракции, аналогично их распределению в продуктах окисления суммарной смолы: и здесь, и там превалируют

|     | Состав    | илентифи | ированны | ах кислот, | образун | ощихся     | - |
|-----|-----------|----------|----------|------------|---------|------------|---|
| при | окислении | фенолов  | тяжелой  | сланцевой  | смолы   | при 20 °С, | % |

|                                                                                                                                                                                                                                                             | Суммарные<br>фенолы |                                                                                                              | Фракции фенолов                               |                   |                    |                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------|--------------------|----------------------------------------------------|
| Кислота                                                                                                                                                                                                                                                     | при 95°             | при 20°                                                                                                      | 1                                             | 2                 | 3                  | 4                                                  |
| Бензойная<br>Ортофталевая<br>Терефталевая<br>Нафтойные (1- или 2-изомеры)<br>Гемимеллитовая (1.2.3)<br>Тримеллитовая (1.2.4)<br>Меллофановая (1.2.3,4)<br>Пренитовая (1.2.3,5)<br>Пиромеллитовая (1.2.4,5)<br>Бензолпентакарбоновая<br>Меллитовая<br>Всего: |                     | $\begin{array}{c} 0,9\\ 44,3\\ 2,2\\ 11,1\\ 10,2\\ 17,3\\ 2,2\\ 4,3\\ 4,0\\ 3,1\\ 0,4\\ 100,0\\ \end{array}$ | 26,8<br>28,9<br>33,1<br>4,9<br>4,2<br>2,1<br> | 0,5<br>42,4<br>   | 7,8<br>34,4<br>    | 36,8<br>43,4<br>8,6<br>9,9<br>1,3<br><br><br>100,0 |
| Доля углерода исходного вещества,<br>переходящая в кислоты:<br>в бензолкарбоновые<br>в алифатические монокарбоновые<br>C <sub>4</sub> —C <sub>18</sub><br>в алифатические дикарбоновые<br>C <sub>4</sub> —C <sub>14</sub>                                   | 3,9<br>—            | 3,2<br>8,1<br>7,6                                                                                            | 4,3<br>2,3<br>0,9                             | 1,9<br>5,4<br>3,9 | 1,3<br>11,3<br>7,1 | 1,5<br>14,7<br>7,3                                 |
| Bcero:                                                                                                                                                                                                                                                      | 3,9                 | 18,9                                                                                                         | 7,5                                           | 11,2              | 19,7               | 23,5                                               |

«четные» кислоты С<sub>16</sub> и С<sub>18</sub>. Однако такого соответствия в распределении монокарбоновых кислот в продуктах окисления суммарной смолы и низкокипящих фракций фенолов уже не наблюдается: в последних обнаруживается значительно меньше кислот выше С<sub>10</sub> и больше кислот до С<sub>10</sub>. Состав дикарбоновых кислот, полученных при окислении суммарных фенолов и их фракций, относительно хорошо совпадает с составом дикарбоновых кислот в продуктах окисления суммарной смолы. Это позволяет сделать вывод, что источники образования дикарбоновых кислот из суммарной смолы и из фенолов, а также из керогена одни и те же.

Если сравнивать составы ароматических кислот, которые образуются при окислении суммарной смолы и фенолов, то и здесь можно найти много общего. В обоих случаях больше всего образуется ортофталевой и тримеллитовой кислот (см. табл. 3). Однако в продуктах окисления фракций фенолов наряду с ортофталевой кислотой в значительных количествах обнаруживаются нафтойные кислоты (1- или 2-изомеры). Поэтому на хроматограммах метиловых эфиров карбоновых кислот с применением колонки 2 воспроизводится один пик, а с использованием колонки 1 — два пика (см. рис. 3). Эти хроматограммы хорошо согласуются с хроматограммой в [<sup>6</sup>], полученной при разделении метиловых эфиров карбоновых кислот на фазе OV-17. На хроматограммах бензолкарбоновых кислот, полученных из суммарной смолы, на этом месте относительно пусто, нет заметных пиков каких-либо соединений. Более того, на хроматограммах продуктов окисления фенолов видны даже пики, соответствующие нафтилдикарбоновым кислотам, но их доля уже незначительна.

В сланцевых фенолах обнаружены оксипроизводные нафталина [<sup>7, 8</sup>]. Их присутствие в фенолах можно объяснить образованием ортофтале-



Рис. 3. Хроматограммы метиловых эфиров кислот эфирного экстракта продуктов окисления 1-й фракции фенолов.

Условия хроматографирования. Колонка 1: 1,6% LAC 2-R-446 на хезасорбе АШ, 0,100—0,125 мм, 0,3×100 см, 4°/мин (А); колонка 2: 1,2% апиезона L + 0,3% дистеарата полиэтиленгликоля на инертоне AW-HMDS, 0,125—0,160 мм, 0,3×100 см, 4°/мин (Б). Цифры у пиков означают число атомов углерода в *н*-алкановых дикарбоновых кислотах.

вой и других бензолкарбоновых кислот, но причина образования нафтойных кислот остается пока не понятной. Если в качестве источников этих кислот в более высококипящих фракциях можно предполагать наличие всевозможных нафтилсодержащих оксисоединений, то для фракций фенолов, которые перегоняются до 300°, это предположение явно неверно. Присутствие алкилпроизводных нафталина в фенолах. которые выделены из бензольного раствора сланцевой смолы щелочной экстракцией, тоже маловероятно.

Результаты настоящей работы показали, что при окислении сланцевых фенолов в основном образуются те же продукты, что и при окислении суммарной сланцевой смолы. Но вместе с тем продукты окисления фенолов содержат и индивидуальные соединения, которые отсутствуют в продуктах окисления суммарной смолы. Чтобы дать ответы на вопросы об источниках этих индивидуальных соединений, нужны дальнейшие исследования как фенолов, так и других составляющих сланцевой смолы.

### Выволы

1. Доля углерода исходного вещества, переходящая в двуокись углерода и щавелевую кислоту при окислении суммарных фенолов, составляет 51-57%, а при окислении фракций фенолов - 37-50%. Газохроматографически идентифицированные кислоты содержат максимально 24% углерода исходных фенолов, среди них установлены алифатические монокарбоновые С4-С18, дикарбоновые С4-С14 и ароматические кислоты.

2. При окислении суммарных фенолов, как и суммарной тяжелой смолы, среди образовавшихся ароматических кислот превалируют ортофталевая и тримеллитовая. В продуктах окисления фракций фенолов тримеллитовой кислоты образуется относительно мало, зато в значительных количествах, равных количеству ортофталевой кислоты, получаются 1- или 2-нафтойные кислоты. Последние в продуктах окисления суммарной смолы практически отсутствуют.

## ЛИТЕРАТУРА

- Randall, R. B., Menger, M. D., Groocock, C. M. The alkaline permanganate oxidation of organic substances selected for their bearing upon the chemical constitution of coal. Ргос. Royal Soc., 1938, A165, N 992, 432—452.
  Поконова Ю. В., Проскуряков В. А., Леванский В. Л. Химия и технология сланцевых фенолов. Л., 1979, 83—85.
  Кокурин А. Д., Галуткина К. А. Изучение фенолов тяжелой сланцевой смолы. Ж. прикл. хим., 1966, № 2, 410—414.
  Побуль Л., Клесмент И., Арро Я. Исследование тяжелой смолы полукоксования сланца-кукерсита. 2. Окисление перманганатом калия. Изв. АН ЭССР. Хим., 1983, 32, № 3, 202—207.
  Арро Я., Грюнер Э., Кивиряхк С., Клесмент И., Куузик М., Линдару Э. Исследования сланца-кукерсита. 1. Вопросы разделения суммарной смолы. Изв. АН ЭССР. Хим., 1983, 32, № 3, 202—201.
  Науаtsu, R., Wanans, R. E., Scott, R. G., MCBeth, R. L. Investigation of aqueous sodium dichromate oxidation for coal structural studies. Fuel, 1981, 60, N 1, 77—86.
- N 1, 77-86. 7. Лилле Ю. Э. Исследования в области алкилрезорцинов. Автореф. докт. дис. Таллин, 1973, 47. 8. Лилле Ю. Э., Кундель Х. А., Мурд А. Г. О содержании диоксинафталинов в фе-
- нолах сланцевой смолы полукоксования. В кн.: Добыча и переработка горючих сланцев. Тр. Ин-та сланцев, вып. 17. Л., 1968, 147—155.

Институт химии Академии наук Эстонской ССР Поступила в редакцию 29/V 1984

#### Linda POBUL, I. KLESMENT, J. ARRO

## PÕLEVKIVI RASKÕLI FENOOLIDE KOOSTIS

### 3. Summaarsete fenoolide oksüdeerimise tulemused

Summaarsete fenoolide ja neist destilleeritud fraktsioonide oksüdeerimisel leelise kaaliumpermanganaadiga muutub pool fenoolide süsinikust süsihappegaasiks ja oblikhappeks ning veerand alifaatseteks monokarboksüülhapeteks  $C_4$ — $C_{18}$  ja dikarboksüülhapeteks  $C_4$ — $C_{14}$ . Vähesel määral moodustub ka 1,2- ja 1,2,4-benseenkarboonhappeid ja naftaleenhappeid. Oli fenoolse ja neutraalse osa oksüdeerimisel saadakse niisamasuguseid produkte.

#### Linda POBUL, I. KLESMENT, J. ARRO

#### COMPOSITION OF HEAVY SHALE OIL PHENOLS

#### 3. Oxidation of total oil phenols

By alkaline potassium permanganate oxidation of total phenols and their distilled fractions, a half of their carbon is transformed into carbon dioxide and oxalic acid, a quarter into aliphatic monocarboxylic acids  $C_4$ — $C_{18}$  and dicarboxylic acids  $C_4$ — $C_{14}$ . Low quantities of 1,2- and 1,2,4-benzenecarbonic and naphthalene acids are also formed. Oxidation of the phenolic and neutral part of shale oil results in similar products.