LÜHITEATEID * КРАТКИЕ СООБЩЕНИЯ

EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. KEEMIA ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ХИМИЯ PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE ESTONIAN SSR. CHEMISTRY

> 1985, 34, 2 https://doi.org/10.3176/chem.1985.2.10

> > УДК 551.464.791.7:547.681

М. УРБАНОВИЧ, Марина ТРАПИДО, А. ЛОБАНОВ

ОПРЕДЕЛЕНИЕ БЕНЗ(А)ПИРЕНА В ПОВЕРХНОСТНЫХ ВОДАХ НЕКОТОРЫХ РАЙОНОВ МИРОВОГО ОКЕАНА

M. URBANOVITŠ, Marina TRAPIDO, A. LOBANOV. BENSO(A)PÜREENI MÄÄRAMINE MAA-ILMAMERE MÕNEDE PIIRKONDADE PINNAVETES

M. URBANOVICH, Marina TRAPIDO, A. LOBANOV. DETERMINATION OF BENZO(A)PYRENE OF SURFACE WATER IN SOME REGIONS OF THE WORLD OCEAN

(Представил О. Эйзен)

Основной целью наших исследований на научно-исследовательском судне «Академик Александр Виноградов» в мае—июле 1983 г. было определение содержания бенз (а) пирена (БП) в различных районах Мирового океана. Пробы отбирали либо пластмассовым ведром по ходу судна при замедлении его движения до 4—6 узлов/ч, либо сеткой Гаррета с размером ячеек 1 мм² во время стоянки судна на станциях. Маршрут судна и точки отбора проб показаны на рис. 1.

Вследствие очень низкого содержания БП в морской воде его экстра-

Рис. 1. Маршрут судна «Академик Александр Виноградов» в мае-июле 1983 г.

5.

143

Номер пробы	Сред- ство отбора	Номер стан- ции	Концентр. БП, нг/л	Район отбора проб	Координа северная широта	ты станций восточная долгота	Интервал отбора проб, ч
$\begin{array}{c}1\\2&3&4\\5&6&7\\8&9&10\\11&12&3&3\\14&15\\16&17&8&19\\20&21&22&3&2\\226&27&8&29\\227&2&8&29\\30&31&32&3\\33&33\end{array}$	ведро ,, сетка ведро сетка ведро сетка ведро ,, ,, ,, ,, ,, ,, ,, ,, ,, ,	3 3 5 13 13 14 19 25 28 29 32 33 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	$\begin{array}{c} 0,39\\ 0,17\\ 0,35\\ 0,37\\ 0,83\\ 0,10\\ 0,51\\ 2,05\\ 0,75\\ 0,75\\ 0,75\\ 0,75\\ 0,75\\ 0,75\\ 0,10\\ 0,14\\ 0,21\\ 0,49\\ 0,39\\ 0,43\\ 0,31\\ 0,47\\ 0,95\\ 0,59\\ 1,51\\ 1,03\\ 2,47\\ 0,55\\ 0,55\\ 0,10\\ 1,67\\ 0,54\\ 0,47\\ 0,43\\ 0,91\\ 0,79\\ 0,10\\ \end{array}$	Атлантический океан "Средиземное море "" Красное море Аравийское море Индийский океан "" "" "" "" "" "" "" "" "" "" "" "" ""	47°43′5 36°01′0 38°06′5 37°48′6 27°00′0 12°17′8 5°59′5 0°00′0 4°10′2 5°43′2 5°53′5 5°56′0 10°04′2 9°58′2 9°51′7 9°45′3 9°39′0 " 9°51′7 9°51′7 9°51′7 9°52′8 9°32′0 9°38′0 10°04′3 10°04′0 9°31′4 9°32′0	$6^{\circ}16'23$ $13^{\circ}10'0$ $4^{\circ}06'0$ $10^{\circ}17'3$ $34^{\circ}50'0$ $49^{\circ}56'0$ $64^{\circ}30'7$ $64^{\circ}30'7$ $64^{\circ}30'7$ $64^{\circ}30'0$ $76^{\circ}49'5$ $81^{\circ}35'6$ $91^{\circ}37'0$ $96^{\circ}00'0$ $106^{\circ}52'4$ $106^{\circ}58'4$ $106^{\circ}48'4$ $106^{\circ}48'4$ $106^{\circ}48'4$ $106^{\circ}48'4$ $106^{\circ}48'4$ $106^{\circ}55'0$ $106^{\circ}48'4'2$ $108^{\circ}11'0$ $107^{\circ}01'1$ 10	через 8 через 12 через 24 черёз 27 через 3

Содержание бенз(а)пирена в поверхностных водах отдельных районов Мирового океана

Примечание. Номера станций с буквой «Б» расположены в мелководных районах, остальные — в глубоководных.

гировали из 4 л воды органическим растворителем. Экстракцию проводили двумя порциями гексана по 75 мл сразу после отбора проб. Далее экстракты высушивали безводным сульфатом натрия, упаривали досуха в роторном испарителе и хранили в темном прохладном месте. Спустя 2—3 месяца определяли содержание БП в лабораторных условиях по методике [¹].

В Южно-Китайском море параллельно брали пробы для определения содержания взвешенного вещества. Пробы морской воды объемом 0,5—2,0 л сначала очищали через мембранный фильтр «СЫНПОР» (диаметр пор 0,4 мкм) специальной установки, затем фильтр высушивали в эксикаторе до постоянного веса и определяли на аналитических весах количество взвешенного вещества в морской воде. Скорость течения в шельфовой зоне Южно-Китайского моря измеряли с помощью буквопечатающих вертушек на горизонтах 6 и 17 м.

Полученные в ходе работы величины концентраций БП (таблица) оказались в среднем на порядок ниже предельно допустимых для пресно-

Рис. 2. Изменение во времени концентрации бенз (а) пирена и взвешенного вещества в мелководных (1) и глубоководных районах (2), а также скорости течения на глубине 6 м (3) и уровня воды (4) в Южно-Китайском море.

водных водоемов в СССР (5 нг/л [²]) и на порядок ниже для незагрязненных вод Мирового океана (3—10 нг/л [^{3—5}]).

Известно, что под действием солнечного излучения в верхнем 10-сантиметровом слое воды в течение 9 ч разрушается приблизительно 99% БП [6]. А поскольку наш рейс проходил в тропических широтах и пробы на исследование БП подвергались интенсивному солнечному облучению, можно предположить, что именно эти условия обусловили столь низкие концентрации БП в поверхностных водах.

Не наблюдалось существенной разницы между содержанием БП в поверхностном микрослое и в подповерхностной воде, хотя в наших исследованиях параллельных измерений в одной точке не проводилось: пробы отбирали либо ведром, либо с помощью сетки Гаррета. В поверхностном микрослое концентрация БП составляла в среднем 0,6 нг/л, а примерно в 0,5-метровом слое — 0,3 нг/л. По данным же [7], в поверхностном микрослое БП содержится в девять раз больше, чем на 1-метровой глубине.

В Южно-Китайском море исследования одновременно проводили с двух судов в мелководных и глубоководных районах на траверзе дельты р. Меконг. Изменение суммарных содержаний взвешенного вещества и БП во времени хорошо совпадали (P=0,7): по мере увеличения содержания взвеси увеличивалась и концентрация БП (рис. 2). В этом районе количество взвеси определяется главным образом речным выносом, который, в свою очередь, зависит от приливно-отливных течений. Минимальные уровни воды совпадают с максимумами скорости течения и содержания взвеси (рис. 2). По-видимому, бо́льшая часть БП находится во взвешенном состоянии, отчего и увеличивается его содержание с возрастанием поступления взвеси с речным стоком в морскую воду. Следует отметить, что во взвешенном веществе содержится значительное коли-

чество фито- и зоопланктона, а содержание БП в планктоне лостигает десятков тысяч нг на 1 кг сухого веса [1].

Таким образом, следует предположить, что величины концентраций БП в открытых частях Атлантического и Индийского океанов являются фоновыми, а в остальных частях Мирового океана они близки к таковым. Выявлена корреляция содержания БП в воде с количеством взвешенного вещества в эстуарии р. Меконг. В дальнейших исследованиях необходимо учитывать величину инсоляции, поскольку под действием солнечного излучения скорость деградации БП в верхнем 10-сантиметровом слое воды весьма высока [6].

ЛИТЕРАТУРА

- 1. Губергриц М., Куйв К., Трапидо М., Чекилаев В. Изучение канцерогенной загрязненности вод Балтийского моря. — Изв. АН ЭССР. Хим., 1982. 31. № 2. 131-135.
- 2. Алексеева Т. А., Теплицкая Т. А. Спектрофлуориметрические методы анализа ароматических углеводородов в природных и техногенных средах. Л., 1981. 4. 104.
- 3. Андрюков В. П., Королев С. М., Ермаков Е. А. Экспериментальные результаты по определению бенз (а) пирена в природных средах. — Тр. Ин-та прикл. геофиз., 1982, вып. 41, 81-83.
- Ильницкий А. П. Канцерогенные углеводороды в почве, воде и растительности. В кн.: Канцерогены в окружающей среде. М., 1975, 53—77.
 Цыбань А. В., Шабад Л. М., Хесина А. Я., Володкович Ю. Л., Панов Г. В., Мирошниченко Н. М., Ермаков Е. А. Циркуляция и биодеградация канцерогенного осо дер. углеводорода бенз (а) пирена в морской среде. — Докл. АН СССР, 1980, 252, № 6, 1490—1493. 6. Белицкий Г. А., Берженн М., Ильницкий А. П., Паркань М., Пинтер А., Ша-бад Л. М. Канцерогенные вещества в окружающей человека среде. Будапешт,
- 1979, 121
- 7. Андрюков В. П., Рябошапко А. Г. Перенос некоторых веществ через границу раздела «океан-атмосфера» в регионе Берингова моря. - Тр. Ин-та прикл. геофиз., 1982, вып. 41, 36-51.

Институт химии Академии наук Эстонской ССР

Поступила в редакцию 5/IV 1984

Тихоокеанский океанологический инститит Дальневосточного научного центра АН СССР