1985, 34, 2

https://doi.org/10.3176/chem.1985.2.05

УДК 543.544.45: 547.313

Анне ОРАВ, Кай КУНИНГАС, Сильвия РАНГ, О. ЭЙЗЕН

РАЗДЕЛЕНИЕ н-ТРИДЕЦЕНОВ, н-ТЕТРАДЕЦЕНОВ И н-АЛКИНОВ С₁₀—С₁₄ НА КАПИЛЛЯРНЫХ КОЛОНКАХ С ПОЛИЭТИЛЕНГЛИКОЛЕМ 20М РАЗНОЙ ПОЛЯРНОСТИ

В связи с тем, что в [1-5] использовались капиллярные колонки с довольно толстым слоем стационарной жидкой фазы, некоторые изомеры *н*-алкенов и *н*-алкинов C₁₀—C₁₄ не поддавались разделению и выходили из колонок вместе. Чтобы разделить эти изомеры, и потребовалось настоящее исследование. Нами были изготовлены капиллярные колонки с более тонким слоем полиэтиленгликоля 20М (ПЭГ 20М) и изучены их свойства.

Основные цели работы:

1) усовершенствование способа нанесения жидкой фазы на стенки капиллярной колонки для обеспечения ее высокой эффективности и селективности;

2) исследование аналитических свойств полученных колонок;

3) установление оптимальных условий газохроматографического разделения вышеназванных углеводородов.

Экспериментальная часть

Исследование проводили на приборе «Хром-З» с пламенно-ионизационным детектором. Газом-носителем служил гелий. Деление газовых потоков на входе в колонку составляло ~1:150. Температура испарителя 300 °C. Было испытано пять капиллярных колонок из нержавеющей стали с внутренним диаметром 0,25 мм и длиной 50 м, а также две 100-метровые колонки, которые получали соединением двух 50-метровых (характеристику колонок и условия анализа см. в табл. 1). Капилляры очищали, промывая их растворителями (~15 мл) под давлением аргона (5 кг/см²). В качестве растворителей использовали метанол, изопропанол, хлороформ, изопропанол, 10%-ную азотную кислоту, воду, метанол и хлороформ. Неподвижную жидкую фазу наносили на внутреннюю поверхность колонки динамическим методом. Для этого готовили 1-5%-ные растворы ПЭГ 20М в хлороформе; 0,2-0,3 мл раствора под давлением аргона (2,5 кг/см²) пропускали через колонку. Для выделения растворителя колонку продували аргоном в течение 24 ч под давлением 1,5 кг/см² при комнатной температуре. После этого в течение ~8 ч температуру колонки повышали до 200°.

Таблица 1

Характеристики капиллярных колонок с ПЭГ 20М при 70 °С и условия эксперимента

Показатель		Колонка											
TIORASATEVID	1*	2	3	4	5	6	7						
Длина колонок, м	100	50	50	50	50	50	100						
Содержание ПЭГ 20М в СНСІ ₃ % мг/мл СН ₂ СІ ₂	5,5 88,2	5,6 88,4	3,3 50,1	2,5 38,9	2,5 38,9	1,8 26,7	2,5 38,9						
Емкостный фактор К: для <i>н</i> -додекана для 1-тетрадецена	3,02 15,6	3,84 20,2	2,84 14,9	1,76 9,10	1,70 9,80	1,50 7,83	2,09 10,9						
Число теоретических таре- лок: по <i>н</i> -додекану по 1-тетрадецену	57000 86000	50000 90000	54000 72000	63000 90000	56000 90000	52000 79000	100000 120000						
Число теоретических таре- лок на 1 м: по <i>н</i> -додекану по 1-тетрадецену	570 860	1000 1800	1080 1440	1260 1800	1120 1800	1040 1580	1000 1200						
Температура колонки, °С	61-80	65—80	65—80	65-75	63-65	65-70	61-80						
Давление газа-носителя на входе в колонку, кг/см ²	3,0—3,5	1,6—2,0	1,5-2,2	1,6—2,0	2,1	1,7-2,2	3,0-3,5						
Скорость газа-носителя, мл/мин	0,4-0,5	0,2-0,4	0,2—0,6	0,3-0,4	0,4-0,5	0,3-0,6	0,4—0,5						

* Колонка изготовлена раньше [⁵].

Обсуждение результатов

Измерены были индексы удерживания (I) *н*-тридеценов, *н*-тетрадеценов и *н*-алкинов C_{10} — C_{14} на колонках с различной толщиной слоя ПЭГ 20М в интервале температур 61— 80° (табл. 2, 3) и емкостные факторы (K) тех же углеводородов при 65— 70° (табл. 3, 4), а также изучена зависимость структурных инкрементов (H) от K при 70° для 1-алкенов и 1-алкинов (рис. 1). Средняя квадратичная ошибка измерений I составляла $\pm 0,5$ ед.

Зависимость I от K носит нелинейный характер: величины изученных соединений увеличиваются с повышением коэффициента K, но лишь до образования определенной толщины пленки ПЭГ 20М (табл. 2—4, рис. 1). С увеличением числа атомов углерода n в молекуле величины K н-алкенов и н-алкинов увеличиваются больше в случае колонок с более толстым слоем ПЭГ 20М. Благодаря этому время анализа высших гомологов с уменьшением толщины слоя ПЭГ 20М сокращается. Более низкие значения I н-алкенов и н-алкинов на колонках с тонким слоем неподвижной фазы можно объяснить частичной ориентацией гидроксильных групп ПЭГ 20М к поверхности стенки капилляра [⁶]. Зависимость I от K выражается уравнением

$$I = A + B/K,\tag{1}$$

константы A, B и коэффициенты корреляции r которого для н-тетрадеценов приведены в табл. 5.

~
-
-
-
-
-
-
-
-
-
-
9
19
IPI
HPI
CIAHO
DHbly
CIAHOR
CIAHORI
CIGHORE
CIGHOREI
CIAHORLI
CIAHORLIL
CIGHORLEN
синивелени
синиястини
синияллина
сындяльных
капиллярны
капиллярны
синиялляния и
синивеления в
сынаялиллярных
сыновелиля вн
синиялилярных
синиялилярны
синиялилярных
синиялиллярных
С. на капиллярных
С. на капиллярных
-С., на капиллярны?
-С., на капиллярных
-С. на капиллярны
о-Сы на капиллярны?
о-Со на капилярны
Со-Со, на капиллярные
СС., на капиллярных
СС., на капиллярных
С. С. На капилярных

Таблица 2

Индексы удерживания I и-алкенов С₁₃--С₁₄ на капиллярных колон с ПЭГ 20М при 65 и 70 °С

Солонка 4 6 2 3 4 6 65° 70° 65° 70° 65° 70° 1242.1 1242.5 1241.9 1242.6 1235.7 1236.3 1231.6 1355.9 1357.2 1345.6 1334.5 1335.8 1331.6 1333.6 1355.9 1357.2 1355.4 1347.5 1334.5 1331.6 1323 1355.9 1357.2 1355.4 1337.2 1331.6 1323 1355.9 1357.2 1355.6 1332.7 1328.6 1332 1337.2 1337.2 1332.7 1328.6 1323 1328.9 1337.2 1337.2 1332.7 1328.9 1328.9 1328.9 1337.1 1338.4 1332.7 1332.6 1328.9 1328.9 1338.4 1333.2 1332.7 1332.6 1328.9 1328.9 1338.4 1332.7 1332.6 1328.9 1328.9 1328.9 1326.4		7	65° 70°	9 1935 1 1936 3	9 1334,6 1335,5	,1 1348,0 1349,0	,8 1357,0 1358,8 0 1321 1 1331 8	7 1333.4 1334.2	8 1322,4 1323,7	,9 1325,5 1326,9	,6 1321,4 1322,3	,5 3 1319.5 ·····	1320,4	0,8161 0,1161 0,	,4 1431,9 1433,9	,3 1444,3 1446,9	3 1453 3 1456 0		,3 1428,3 1430,1 1420,9 1430,1	3 1428,3 1430,1 ,1 1430,2 1430,1 0 1410,0 1491,7	, 1 1428, 1428, 1428, 1430, 1 1 1430, 2 1432, 1432, 1430, 1 9 1419, 9 1421, 7 3 1422, 0 1424, 4	3 1428,3 1430,1 1 1430,2 1432,4 9 1419,9 1421,7 3 1422,0 1422,4 1 1422,0 1422,4 1 1422,0 1424,4 1 1419,0 1421,7	3 1428,3 1430,1 1 1430,2 1432,4 9 1419,9 1421,7 3 1422,0 1421,7 1 1419,9 1421,7 3 1422,0 1424,4 6 1418,0 1421,7 1 1418,0 1421,7	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Солонка Аслонка 65° 70° 65° 70° 65° 70° 65° 70° 65° 70° 65° 70° 1242.1 1242.5 1340.8 1334.5 1335.6 1334.5 1355.9 1357.2 1340.8 1342.6 1334.5 1335.6 1337.7 1335.7 1347.5 1334.5 1335.7 1337.7 1339.2 1334.5 1332.7 1334.5 1337.7 1339.2 1332.7 1332.7 1332.7 1337.7 1332.8 1342.6 1332.7 1332.7 1332.6 1332.7 1332.7 1332.7 1332.7 1332.6 1332.8 1332.7 1332.4 1324.5 1332.6.4 - - 1322.4 1324.5 1332.6.4 - - 1322.4 1324.5 1332.6.4 - - 1322.4 1324.5 1332.6.4 - - 1322.4 1324.5		9	65° 70°	1931.6 1939.9	1331.6 1331.9	1 1343,3 1344,1	2 1351,6 1352,8	1328.9 1330.7	1319,1 1320,8	5 1321,9 1322,9	7 1317,9 1318,6	1315,9 1317,5	1316,5 1317,9	0 1010,9 1010,0	7 1428,7 1431,4	1441,4 1443,3	C LIVI I VVV I	1449,4	8 1425,9 1428,3 1425,9 1428,3	1449,4 1425,9 1428,3 1425,9 1428,3 1428,3 7 1427,3 1429,1 1417,5 1410,0 1410,0	1449,4 1491,3 1425,9 1428,3 1427,3 1429,1 11427,3 1429,1 11417,5 1419,9 11419,4 1429,3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1449.4 1491,3 1425,9 1428,3 1429,1 1417,5 1419,9 1419,4 1422,3 1415,8 1419,4 1415,8 1418,6 1413,6 1416,1	1449.4 1449.4 1425.9 1428.3 1425.9 1428.3 1427.3 1429.9 1417.5 1419.9 1417.6 1419.9 1415.8 1419.6 1415.8 1415.8 1413.6 1415.8 1413.6 1415.8 1411.8 1415.3	14491, 14491, 1425,9 1428,3 1427,3 1429,3 1417,5 1419,9 1417,5 1419,9 1415,8 1418,6 1415,8 1418,6 1411,8 1416,1 1411,8 1416,1 1411,8 1416,3 1411,8 1416,3 1411,8 1416,3 1411,8 1416,3 1411,8 1416,3 1411,8 1416,3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2 70° 65° 70° 65° 70° 65° 70° 65° 70° 65° 70° 1242.1 1242.5 1242.5 1242.6 70° 65° 70° 1341.8 1342.5 1340.8 1342.6 1242.6 1242.6 1242.6 1337.7 1335.9 13357.2 13365.4 1342.0 1337.7 1339.2 13367.4 13342.8 1342.0 1337.7 1339.2 13367.4 1325.4 1337.9 1333.2 13365.4 1325.8 13226.4 13225.8 13321.3 13226.4 13225.8 13321.3	олонка	4	65° 70°	1935.7 1936.3	1334.5 1335.8	1347,5 1348,4	1355,6 1357,2	1339.7 1334.5	1323,1 1324,2	1324,8 1326,5	1321,8 1322,7	1320,5	1319,7 1321,0	131/,4 131/,9	1433,5 1434,7	1445,6 1447,1		1	1430,1 1430,3	1430,1 1430,3 1431,4 1432,7 1431,4 1432,7	1430,1 1430,3 1431,4 1432,7 1421,2 1422,3 1429,5 1494,4	1430,1 1430,1 1431,4 1432,7 1422,5 1422,5 1422,5 1424,4 1419,3 1420,6 1424,4	1430,1 1430,1 1431,4 1432,7 1422,5 1422,5 1422,5 1422,4 1419,3 1420,6 1417,0 1418,6	1430,1 1431,4 1431,4 1432,7 1422,5 1422,5 1422,5 1424,4 1419,3 1420,6 1417,0 1418,6 1418,6 1418,6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1430,1 1431,4 1431,4 1421,2 1422,5 1422,5 1422,5 1422,5 1422,5 1420,6 1419,3 1418,6 1418,6 1418,6 1418,6 1416,2 1426,2 14	1430,1 1430,3 1431,4 1432,3 1421,2 1422,3 1422,5 1422,4 1417,0 1418,6 1417,0 1418,6 1416,4 1418,6 1415,8 1416,3 1415,8 1416,3 1415,8 1415,2 1415,8 1415,3 1415,8 1415,3 1415,8 1415,3 1415,8 1415,3 1415,8 1415,3 1411,1 1412,3
2 2 65° 70° 65° 70° 1242.1 1242.5 1341.8 1342.5 1355.9 1367.2 1356.4 1342.5 1337.7 1339.2 1336.9 1367.2 1331.9 1357.2 1328.4 13332.2 1331.9 13332.2 1326.4 - - 1332.7 1322.4 13332.2 1322.4 1332.2 1322.4 - 1322.4 - 1322.4 - 1322.4 - 1325.4 1441.9 1455.4 1456.2	Ka	3	65° 70°	1941 9 1949 6	1340.8 1342.0	1355,0 -	1365,4	1340.8	1328,1 -	1331,3 -		1325,8 -		- 1,6261	1440,9 1441,7	1454,8 1455,5			1436,3 1436,8	1436,3 1436,8 1439,3 1440,0 1436,0 1498,0							
		2	65° 70°	19491 19495	1341.8 1342.5	1355,9 1357,2	1365,9 1367,3	1341 8 1342.5	1328,4 1330,2	1331,9 1333,2		1326,4 —		1323,/ -	1441,9 1442,9	1455,4 1456,2			1437,5 1437,9	1437,5 1437,9 1439,6 1441,4 1499,6 1441,4	1437,5 1437,9 1439,6 1441,4 1428,2 1428,5 1431,1 1428,5	1437,5 1437,9 1439,6 1441,4 1439,6 1441,4 1428,2 1428,5 1428,1 1438,5 1431,1 1432,0 1495,7 1496,9	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 1437,5 \\ 1437,5 \\ 1439,6 \\ 1441,4 \\ 1428,2 \\ 1421,1 \\ 1428,1 \\ 1425,7 \\ 1426,9 \\ 1424,4 \\ 1424,4 \\ 1424,3 \\ 1423,4 \\ 1423,4 \\ 1422,2 \\ 142,2 \\ $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	「「「「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」	Углеводород			1-Додецен	транс-2-Трилецен	цис-2-Тридецен	транс-3-1 ридецен	<i>цис-Э-</i> 1 ридецен <i>транс</i> -4-Трилепен	иис-4-Трилецен	транс-5-Триленен	цис-5-Тридецен	транс-6-Тридецен	цис-6-Тридецен	1-Тетраленен	транс-2-Тетрадецен		цис-2-Тетрадецен	цис-2-Тетрадецен транс-3-Тетрадецен	<i>цис-2</i> -Тетрадецен <i>транс-</i> 3-Тетрадецен <i>цис-</i> 3-Тетрадецен	цис-2-Тетрадецен транс-3-Тетрадецен цис-3-Тетрадецен транс-4-Тетрадецен	цис-2-Тетрадецен транс-3-Тетрадецен цис-3-Тетрадецен транс-4-Тетрадецен цис-4-Тетрадецен	цис-2-Тетрадецен транс-3-Тетрадецен цис-3-Тетрадецен транс-4-Тетрадецен цис-4-Тетрадецен транс-5-Тетрадецен тис-5-Тетрадецен	цис-2-Тетрадецен транс-3-Тетрадецен цис-3-Тетрадецен транс-4-Тетрадецен цис-4-Тетрадецен транс-5-Тетрадецен	цис-2-Тетрадецен транс-3-Тетрадецен цис-3-Тетрадецен цис-4-Тетрадецен цис-4-Тетрадецен транс-5-Тетрадецен транс-5-Тетрадецен транс-6-Тетрадецен	цис-2-Тетрадецен транс-3-Тетрадецен цис-3-Тетрадецен цис-4-Тетрадецен цис-5-Тетрадецен цис-5-Тетрадецен цис-6-Тетрадецен чис-6-Тетрадецен	цис-2-Тетрадецен транс-3-Тетрадецен цис-3-Тетрадецен транс-4-Тетрадецен транс-5-Тетрадецен цис-5-Тетрадецен цис-6-Тетрадецен цис-6-Тетрадецен транс-7-Тетрадецен

* Данные для 1-додецена приведены для сравнения (здесь и в табл. 4 и 5).

Таблица З

Индексы удерживания І и ем	мкостные ф	ракторы К	н-алкинов	C10-C14
----------------------------	------------	-----------	-----------	---------

Terrange and the or	C. S. S. S.	Колонк	a 1	Колонка 7					
Угле- водород	We want	I	a shall t	K	HIRRE	Ι		K	
	61°	70°	80°	70°	61°	70°	80°	70°	
1-Децин 2-Децин 3-Децин 4-Децин 5-Децин	1228,8 1253,2 1197,5 1184,4 1182,7	1226,8 1255,5 1202,7 }1186,1	1230,0 1256,9 1203,1 }1188,1	3,78 4,48 3,13 }2,80	1211,1 1234,5 1185,3 1170,2 1168,4	1212,1 1237,1 1187,5 1172,5 1171,0		2,14 2,55 1,80 1,62 1,60	
1-Ундецин 2-Ундецин 3-Ундецин 4-Ундецин 5-Ундецин		1329,1 1354,0 1300,0 1282,5 1278,8	1329,7 1355,9 1301,3 1284,1 1280,4	7,38 8,74 6,06 5,38 5,25	1307,8 1330,4 1281,1 1264,7 1261,1	1310,0 1334,1 1283,8 1267,6 1263,6	1311,6 1337,4 1285,8 1269,1 1266,0	4,24 5,04 3,53 3,15 3,07	
1-Додецин 2-Додецин 3-Додецин 4-Додецин 5-Додецин 6-Додецин		1427,8 1452,0 1398,5 1379,5 }1374,0	1428,9 1455,0 1400,0 1381,0 }1375,9	14,37 16,92 11,80 10,37 }10,00	1404,8 1426,7 1377,1 1359,7 1354,5 1353,7	1407,4 1430,9 1380,0 1362,7 }1357,7	$\left.\begin{array}{c}1409,6\\1434,7\\1382,5\\1365,3\\1360,8\end{array}\right\}$	8,47 10,01 6,96 6,17 } 5,95	
1-Тридецин 2-Тридецин 3-Тридецин 4-Тридецин 5-Тридецин 6-Тридецин		$1526,1 \\ 1549,9 \\ 1495,3 \\ 1475,8 \\ 1469,2 \\ 1466,5 \\ 1$	$1527,2 \\ 1552,9 \\ 1498,5 \\ 1478,7 \\ 1472,2 \\ 1469,4$	27,84 32,68 22,63 19,85 18,99 18,64		$1503,8 \\ 1526,9 \\ 1476,5 \\ 1458,0 \\ 1452,3 \\ 1449,1$	$1506,7 \\ 1531,5 \\ 1479,7 \\ 1461,2 \\ 1455,4 \\ 1452,6$	16,78 19,77 13,83 12,13 11,65 11,39	
1-Тетрадецин 2-Тетрадецин 3-Тетрадецин 4-Тетрадецин 5-Тетрадецин 6-Тетрадецин 7-Тетрадецин	111111	111111	$\begin{array}{c} 1626,2\\ 1651,8\\ 1596,0\\ 1576,0\\ 1568,6\\ 1564,3\\ 1562,3\\ \end{array}$	111111			$\begin{array}{c} 1603,5\\ 1628,3\\ 1576,4\\ 1557,8\\ 1551,0\\ 1546,9\\ 1545,1 \end{array}$	 27,24 23,88 22,77 22,14 21,88	

Разделение изомерных *н*-тридеценов и *н*-тетрадеценов. Исследовали разделение всех теоретически возможных 11 изомеров *н*-тридеценов (9 из них кипят в пределах 1,6°) и 13 изомеров *н*-тетрадеценов (11 из них кипят в пределах 2°). Наиболее трудно поддавались разделению изомеры с двойной связью в середине цепи (5-, 6- и 7-алкены), а также 1-алкен и цис-3-алкен.

Анализы на ПЭГ 20М проводили при самых низких из возможных температур (61—70°). Ниже 60° эффективность колонки резко понижается, так как ПЭГ 20М начинает выкристаллизовываться. Зависимость I от T у цис-алкенов немного выше, чем у транс-алкенов; уменьшение T ведет к улучшению разделения цис- и транс-алкенов с двойной связью в середине цепи, так как при 61—70° цис-5-, цис-6- и цис-7-алкены элюируются раньше соответствующих транс-алкенов. Отделение 1-алкена от цис-3-алкена тоже улучшается при низких температурах колонки.

Другую возможность для улучшения разделения изомеров *н*-алкенов открывает уменьшение полярности колонки, которая нелинейно зависит от толщины слоя ПЭГ 20М (рис. 1).

Хроматограммы изомерных *н*-тетрадеценов на 50-метровых колонках разной полярности при 65° (рис. 2) показали, что 1- и цис-3-тетрадецены, а также цис- и транс-5-, -6- и -7-тетрадецены разделяются на 4-й колонке немного лучше, чем на 2-й. Разделить транс-6- и

Емкостные факторы К и-алкенов С₁₃—С₁₄ на капиллярных колонках с ПЭГ 20М при 65 и 70 °С

- Wester		1 95-	-	ł	Колонка	a			
Углеводород	1	2	1 3	3		4	1.200	6	7
	70°	70°	65°	70°	65°	70°	65°	70°	70°
1-Додецен 1-Тридецен <i>транс</i> -2-Тридецен <i>цис</i> -2-Тридецен <i>транс</i> -3-Тридецен <i>цис</i> -3-Тридецен <i>транс</i> -4-Тридецен <i>цис</i> -4-Тридецен <i>цис</i> -5-Тридецен <i>транс</i> -6-Тридецен <i>цис</i> -6-Тридецен	4,06 7,99 8,79 9,47 7,74 - 7,27 7,49 - 7,12 7,12	5,14 10,17 11,24 12,04 9,94 9,94 9,54 	4,97 9,91 	3,82 7,53 	3,10 6,45 	2,37 4,81 5,55 5,92 4,95 4,68 4,68 4,63 4,57 4,57	$\begin{array}{c} 2,38\\ 5,02\\ 5,48\\ 5,83\\ 4,82\\ 4,86\\ 4,52\\ 4,72\\ 4,71\\ 4,51\\ 4,54\\ 4,43\end{array}$	$1,86 \\ 3,79 \\ 4,20 \\ 4,47 \\ 3,76 \\ 4,04 \\ 3,50 \\ 3,67 \\ 3,63 \\ 3,39 \\ 3,58 \\ 3,41 \\$	2,73 5,43 5,94 6,33 5,29 5,39 5,00 5,11 4,96 4,90 4,85
1-Тетрадецен <i>транс</i> -2-Тетрадецен <i>цис</i> -2-Тетрадецен <i>транс</i> -3-Тетрадецен <i>цис</i> -3-Тетрадецен <i>цис</i> -4-Тетрадецен <i>цис</i> -4-Тетрадецен <i>транс</i> -5-Тетрадецен <i>цис</i> -5-Тетрадецен <i>цис</i> -6-Тетрадецен <i>транс</i> -6-Тетрадецен <i>цис</i> -7-Тетрадецен <i>цис</i> -7-Тетрадецен	15,64 17,18 18,49 15,14 15,50 14,24 14,61 14,22 14,22 	20,17 22,08 	19,95 22,00 	14,92 16,38 	13,49 14,69 	$\begin{array}{c} 9,71\\ 10,50\\ \hline \\ 9,45\\ 9,57\\ 8,89\\ 9,02\\ 8,78\\ 8,66\\ 8,64\\ 8,45\\ 8,58\\ 8,29\\ \end{array}$	$\begin{array}{c} 10,38\\11,22\\11,92\\10,18\\10,07\\9,45\\9,60\\9,34\\9,24\\9,03\\8,86\\9,04\\8,77\end{array}$	$\begin{array}{c} 7,83\\ 8,58\\ 9,04\\ 7,65\\ 7,90\\ 7,33\\ 7,47\\ 7,13\\ 7,09\\ 7,04\\ 6,95\\ 7,27\\ 6,84 \end{array}$	$\begin{array}{c} 10,54\\ 11,51\\ 12,30\\ 10,29\\ 10,44\\ 9,70\\ 9,87\\ 9,58\\ 9,40\\ 9,47\\ 9,25\\ 9,32\\ 9,19\\ \end{array}$

Таблица 5

Константы А, В и коэффициенты корреляции r уравнения (1) для н-тетрадеценов при 65 и 70 °С

Углеводород	A B		r	Α	B	r			
		65°		70°					
1-Додецен 1-Тридецен 1-Тетрадецен <i>транс</i> -2-Тетрадецен <i>транс</i> -3-Тетрадецен <i>цис</i> -3-Тетрадецен <i>цис</i> -4-Тетрадецен <i>цис</i> -4-Тетрадецен <i>цис</i> -5-Тетрадецен <i>цис</i> -6-Тетрадецен <i>транс</i> -6-Тетрадецен <i>транс</i> -7-Тетрадецен <i>цис</i> -7-Тетрадецен	$\begin{array}{c} 1251,4\\ 1350,0\\ 1453,8\\ 1468,1\\ 1447,7\\ 1451,3\\ 1436,9\\ 1441,2\\ 1434,7\\ 1434,3\\ 1433,1\\ 1429,7\\ 1429,1\\ 1427,1\\ \end{array}$	$\begin{array}{r} -47,2\\ -94,4\\ -264,7\\ -308,6\\ -224,7\\ -247,6\\ -186,2\\ -215,2\\ -179,3\\ -195,1\\ -194,1\\ -177,8\\ -152,2\\ -170,2\\ \end{array}$	$\begin{array}{c} -0,9985\\ -0,9885\\ -0,9950\\ -0,9818\\ -0,9971\\ -0,9866\\ -0,9953\\ -0,9800\\ -0,9948\\ -0,9948\\ -0,9948\\ -0,9983\\ -0,9750\\ -0,9963\\ -0,9816\\ \end{array}$	$\begin{array}{c} 1252,4\\ 1352,2\\ 1452,9\\ 1468,9\\ 1446,2\\ 1452,5\\ 1437,4\\ 1441,3\\ 1433,5\\ 1434,3\\ 1433,5\\ 1434,3\\ 1430,7\\ 1432,5\\ 1430,3\\ 1428,3\\ \end{array}$	$\begin{array}{c} -37,8\\ -77,4\\ -171,5\\ -222,3\\ -141,4\\ -186,7\\ -130,7\\ -145,6\\ -108,6\\ -131,4\\ -108,1\\ -145,5\\ -113,0\\ -128,1\\ \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			

цис-5-тетрадецены на 50-метровых колонках с ПЭГ 20М не удалось. На 50-метровых колонках не разделялись также транс-6- и цис-5-тридецены и 1- и цис-3-тридецены (рис. 3, А). Для повышения эффективности разделения соединили 4-ю и 5-ю колонки и получили таким

Рис. 1. Зависимость структурных инкрементов *H* от емкостного фактора *K* для 1-алкенов (сплошная линия) и 1-алкинов (пунктир) С₁₀—С₁₄ при 70 °С; О — 50-метровые и ● — 100-метровые колонки.

Рис. 2. Хроматограммы н-тетрадеценов на 2-й (А) и 4-й (Б) колонках с ПЭГ 20М при температуре 65 °С и давлении гелия 2,1 кп/см². Цифры у пиков — положение двойной связи; ц, т — цис- и транс-изомеры.

образом 100-метровую, на которой разделялись 1- и цис-3-тридецены, а также улучшилось разделение транс-4- и транс-5-тридеценов, цис-6-

Рис. 3. Хроматограммы н-тридеценов на 50-метровой (А) и 100-метровой (Б) колонках с ПЭГ 20М при 64 °С.

Рис. 4. Хроматограмма н-тетрадеценов на 7-й 100-метровой колонке с ПЭГ – 20М при 71 °С и давлении гелия 3,1 кг/см².

и цис-5-тридеценов (рис. 3, Б). И все же цис-5- и транс-6-тридецены остались не разделенными. При 65° поддались разделению 12 изомеров н-тетрадеценов из 13 возможных. Чтобы улучшить разделение цис-5- и транс-6-тетрадеценов, температуру колонки повысили до 71° (рис. 4).

Разделение изомерных *н*-алкинов $C_{10}-C_{14}$. Большие величины времен удерживания *н*-алкинов на ПЭГ 20М дают возможность разделять на этих колонках при 61—80° не только изомеры *н*-три- и тетрадецинов, но и изомеры *н*-алкинов $C_{10}-C_{12}$. Индексы удерживания этих соединений уменьшаются с уменьшением полярности колонки больше, чем *н*-алкенов. На 1-й колонке (5,5% ПЭГ 20М) величины *I н*-алкинов на 12—20 ед., а *н*-алкенов на 7—10 ед. больше, чем на 7-й колонке (2,5% ПЭГ 20М) (табл. 2 и 3).

Самые трудноразделяемые пары при анализе изомерных *н*-алкинов $C_{10}-C_{14}$ — это 4- и 5-децины, а также 5- и 6-додецины. Другие изомеры на 100-метровых колонках с ПЭГ 20М разделяются полностью. На 7-й колонке (100 м, 2,5% ПЭГ 20М) при 61° и давлении гелия 3,0 кг/см² не полностью разделились 4- и 5-децины (dI=1,8 ед.) и 5-

3*

Рис. 5. Разделение внутренных изомеров н-алкинов C₁₀—C₁₄ на 7-й 100-метровой колонке с ПЭГ 20М. Цифры у пиков — положение тройной связи.

и 6-додецины (dI = 0,8 ед.). Время удерживания *н*-додецинов 3,5 ч. Так как элюирование *н*-три- и тетрадецинов на колонке с ПЭГ 20М занимает много времени, а разделение 5- и 6-тридецинов, а также 5-, 6- и 7-тетрадецинов не представляет трудностей, то их анализ можно проводить при более высоких температурах колонки и давлениях газаносителя (рис. 5). При 80° и давлении гелия 3,5 кг/см² время выхода *н*-тридецинов 2 ч, а *н*-тетрадецинов 3 ч 50 мин.

Выводы

1. Изготовлены капиллярные колонки с разной толщиной пленки ПЭГ 20М и исследована на них зависимость *I* от *K* для *н*-алкенов и *н*-алкинов С₁₀—С₁₄.

2. Установлены оптимальные условия, обеспечивающие разделение 10 из 11 изомеров *н*-тридеценов, всех 13 изомеров *н*-тетрадеценов и всех изомеров *н*-алкинов С₁₀—С₁₄. Времена удерживания *н*-алкенов и *н*-алки-

нов Сто-Ста на 50-метровых колонках не превышают 2,5 ч, на 100-метровых — 3.5 ч.

3. Выведено корреляционное уравнение, позволяющее предсказать величины / на базе К.

ЛИТЕРАТУРА

- Rang, S., Kuningas, K., Orav, A., Eisen, O. Capillary gas chromatography of n-al-kynes. I. Retention indices. J. Chromatogr., 1976, 119, 451—460.
 Rang, S., Kuningas, K., Orav, A., Eisen, O. Capillary gas chromatography of C₆—C₁₄ n-alkenes on polyphenylether and polyethylene glycol 4000. Chromatographia, 1977, 10, N 2, 55—64.
 Орав А., Кунингас К., Ранг С., Эйзен О. Капиллярная газовая хроматография А. ЭСС.
- Орав А., Кунингас К., Ранг С., Эйзен О. Капиллярпая Газовая хроматография н-алкенов С₁₀—С₁₃ на 1,2,3-трис (2-цианэтокси) пропане. Изв. АН ЭССР. Хим., 1980, 29, № 1, 18—24.
 Орав А., Кунингас К., Ранг С., Эйзен О. Капиллярная газовая хроматография н-алкинов на 1,2,3-трис (2-цианэтокси) пропане. Изв. АН ЭССР. Хим., 1980,
- 29, № 3, 177—184. 5. Орав А., Кунингас К., Ранг С., Эйзен О. Капиллярная газовая хроматография н-алкинов на полиэтиленгликоле 20М. — Изв. АН ЭССР. Хим., 1980, 29, № 4, 262 - 270.
- Soják, L., Krupcik, J., Janak, J. Gas chromatography of all C15-C18 linear alkenes 6 on capillary with very high resolution power. - J. Chromatogr., 1980, 195, N 1, 43-64.

Инститит химии Академии наук Эстонской ССР Поступила в редакцию 18/IX 1984

Anne ORAV. Kai KUNINGAS, Silvia RANG, O. EISEN

n-TRIDETSEENIDE, n-TETRADETSEENIDE JA C10-C14 n-ALKÜÜNIDE LAHUTAMINE ERINEVA POLAARSUSEGA POLÜETÜLEENGLÜKOOLI 20M KAPILLAARKOLONNIDE ABIL

On valmistatud viis polüetüleenglükooli 20M (PEG 20M) kihi paksuselt erinevat 50 meetri pikkust kapillaarkolonni, arvutatud nende kolonnide efektiivsused ja mahtuvustegurid, määratud *n*-alkeenide retentsiooniindeksid ning leitud optimaalsed tingimused nende isomeeride eraldamiseks. 100 meetri pikkuse õhukese PEG 20M kihiga kolonni abil õnnestus eraldada kõik C_{10} — C_{14} *n*-alküünide ja C_{13} — C_{14} *n*-alkeenide isomeerid, v. a. cis-5- ja trans-6-tridetseenid.

Anne ORAV, Kai KUNINGAS, Silvia RANG, O. EISEN

CAPILLARY GAS CHROMATOGRAPHY OF n-TRIDECENES. *n*-TETRADECENES AND C₁₀-C₁₄ *n*-ALKYNES ON POLYETHYLENE **GLYCOL 20M OF DIFFERENT POLARITY**

Five 50-meter capillary columns with different thickness of polyethylene glycol 20M (PEG 20M) film were prepared. Efficiency and capacity ratios of these columns were determined. The separation of isomers of C_{13} — C_{14} *n*-alkenes and C_{10} — C_{14} *n*-alkynes on these columns were studied at minimum low working temperatures of PEG 20M (61—70°). All isomers of C_{10} — C_{14} *n*-alkynes and C_{13} — C_{14} *n*-alkenes (except *cis*-5- and *trans*-6-tridecenes) were separated on 100-meter columns with thin PEG 20M film and 120 000 theoretical plates.