EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. 32. KÕIDE KEEMIA. 1983, NR. 2

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 32 ХИМИЯ. 1983, № 2

https://doi.org/10.3176/chem.1983.2.05

УДК 547.435; 661.185

Рутт ТОМСОН, С. ФАЙНГОЛЬД, Д. РОЙЗ

ДИНАТРИЕВЫЕ СОЛИ 1-АМИНОАЛКИЛ-N,N-БИС(@-ЭТАН-СУЛЬФОКИСЛОТЫ)

1. СИНТЕЗ

(Представил О. Эйзен)

Поверхностно-активные вещества (ПАВ) гомологического ряда динатриевых солей 1-аминоалкил-N,N-бис (ω-этансульфокислоты) (ДААБЭС), общая формула которых RN (CH₂CH₂SO₃Na)₂, где R-алкильный радикал с длиной цепи C₈, C₁₀, C₁₂, C₁₄ и C₁₆, в литературе не освещены. Вещества этого типа относятся к классу амфолитных ПАВ, так как в их молекуле содержатся щелочная и кислотная группы, которые при определенных рН образуют цвиттерионы. Поскольку кислотная группа значительно сильнее щелочной, эти вещества применяются преимущественно в анионной форме. Их катионная форма проявляется лишь в очень сильных кислых средах, изоэлектрическая точка находится в широком диапазоне рН, а в цвиттерионной форме они нерастворимы в воде. Поэтому эти вещества правильнее считать несбалансированными амфолитными ПАВ, не проявляющими в нейтральной среде свойств неионногенных ПАВ, так как общий заряд остается все же высоким, и в цвиттерионной форме они не обладают свойствами полноценных ПАВ.

По методу синтеза ДААБЭС близки к алкилтауратам (АТ) — динатриевым солям 1-аминоалкил-N-этансульфокислоты, практическое применение которых затруднено плохой растворимостью в воде [^{1, 2}]. Близкими по химическому строению веществами, о синтезе которых имеются сведения в литературе, являются динатриевые соли 1-аминоалкил-N,N-бис (ω пропансульфокислоты) $RN(CH_2CH_2CH_2SO_3Na)_2$ (ДААБПС) [³], динатриевые соли 1-аминоалкил-N,N-бис (ω -оксипропансульфокислоты) $RN(CH_2CHOHCH_2SO_3Na)_2$ (ДААБОПС) [⁴], дикалиевые соли 1-аминоалкил-N,N-бис (ω -метилэфиропропансульфокислоты $RN(CH_2COO(CH_2)_3SO_3K)_2$ (ДААБЭПС) [⁵]. Общее для всех вышеперечисленных соединений — хорошие санитарно-гигиенические свой-

перечисленных соединений — хорошие санитарно-гигиенические свойства, отсутствие токсичности и раздражающего действия на кожу, а также легкая биохимическая окисляемость.

Благодаря коллондно-химическим свойствам указанные вещества обладают повышенной способностью диспергировать кальциевые соли высших жирных кислот. В табл. 1 приведены числа гидрофильно-липофильного баланса (ГЛБ) для различных веществ с алкильными радикалами, равными С₁₂, рассчитанные по методике [⁶]. Как видно, лучшие показатели диспергирующей способности для АТ соответствуют С₁₂, для ДААБЭС — С₁₄, а для ДААБОПС и ДААБЭПС — С₁₆. Хотя данные ГЛБ имеют несколько условный характер, по-видимому, все же можно предсказать, что вещества с одинаковыми числами ГЛБ, содержащие в молекуле азот и две гидрофильные группы, обладают равной диспергирующей способностью. Динатриевые соли 1-аминоалкил-N,N-бис (ω-этансульфокислоты) могут быть получены путем конденсации натриевой соли алкилтаурина с натриевой солью бета-галоидэтансульфокислоты.

Таблица 1

Числа ГЛБ и диспергирующая способность некоторых ПАВ

Химическое название	Формула	Условное название	Число ГЛБ для R=12	Диспергирующая способность	
Натриевая соль 1-аминоалкил-N- этансульфокислоты	RNHCH ₂ CH ₂ SO ₃ Na	AT	20,75	$8(R=C_{12})$	
Динатриевая соль 1-аминоалкил-N,N- бис (ω-этансульфокислоты)	RN (CH ₂ CH ₂ SO ₃ Na) ₂	ДААБЭС	30,8	$3(R=C_{14})$	
Динатриевая соль 1-аминоалкил-N,N- бис (ω-пропансульфокислоты)	$RN(CH_2CH_2CH_2SO_3Na)_2$	ДААБПС	29,85	$3(R=C_{16})$	
Динатриевая соль 1-аминоалкил-N,N- бис (ω-оксипропансульфокислоты)	RN (CH ₂ CH (OH) CH ₂ SO ₃ Na) ₂	ДААБОПС	33,65	-	
Дикалиевая соль 1-аминоалкил-N,N- бис (ω-метилэфиропропансульфо- кислоты)	$RN(CH_2COO(CH_2)_3SO_3K)_2$	ДААБЭПС	33,7	$8(R=C_{16})$	

Более простым способом, обеспечивающим достаточную чистоту получаемых продуктов, оказался синтез динатриевых солей 1-аминоалкил-N,N-бис (ω-этансульфокислоты) на основе алкиламинов и натриевой соли бета-галоидэтансульфокислоты.

Для характеристики синтезированных соединений использовали методы спектрального анализа и определения их элементного состава. При технологическом использовании обоих методов синтеза побочным продуктом была натриевая соль алкилтаурина (RNHCH₂CH₂SO₃Na) — полноценное ПАВ, примеси которого незначительно влияют на коллондно-химические свойства основного целевого продукта. Заметное влияние примеси оказывают лишь на диспергирующую способность ДААБЭС.

Синтез динатриевой соли 1-аминодецил-N, N-бис (о-этансульфокислоты) по реакции алифатических аминов с бромэтансульфокислотой проводили следующим способом. 422 г (2 моля) натриевой соли бета-бромэтансульфокислоты растворяли при нагревании в растворе едкого натрия: 80 г (2 моля) едкого натрия в 1370 мл 70%-ного спирта. Затем при перемешивании добавляли 157,3 г (1 моль) дециламина, растворенного в 100 мл 96%-ного этанола. Реакция длится 21 ч. По окончании реакции непрореагировавший дециламин отделяли гексаном и спирто-водный слой высушивали досуха. Продуктами реакции, кроме динатриевой соли 1-аминодецил-N,N-бис (о-этансульфокислоты), является и натриевая соль 1-аминодецил-N-этансульфокислоты. Для их разделения натриевую соль 1-аминодецил-N-этансульфокислоты выделяли при помощи экстракции изобутиловым спиртом, так как 1-аминодецил-N-этансульфокислота растворяется в изобутиловом спирте лучше, чем динатриевая соль 1-аминодецил-N,N-бис (ω-этансульфокислоты). Экстракция изобутиловым спиртом дает лучшие результаты для гомологов с высшим числом атомов углерода, так как растворимость динатриевой соли 1-аминоалкил- -N,N-бис (ш-этансульфокислоты) в изобутиловом спирте уменьшается с ростом молекулярной массы. После растворения сухого остатка в воде и экстракции изобутиловым спиртом полученный водный слой опять высушивали досуха, обрабатывали 96%-ным этанолом и отделяли динатриевую соль 1-аминодецил-N,N-бис (ω-этансульфокислоты). В табл. 2

Таблица 2

Характеристика динатриевых солей 1-аминоалкил-N, N-бис(о-этансульфокислоты)

Кол-во атомов С в ал- кильной цепи		Элементный состав, %						
	Метод	д	N	С		Н		
		теор.	экспер.	теор.	экспер.	теор.	экспер.	
8 10 12 14 16	I II II II II II	3,59 3,36 3,15 2,96 2,79	3,52 3,32 3,06 2,64 2,34	37,1 40,3 43,1 45,7 47,9	33,6 37,3 41,3 42,01 45,02	6,44 6,95 7,43 7,82 8,18	6,3 6,97 7,74 7,76 8,29	

Валновое число, см-1.100 -

10

10

8

G

ИК-спектры: А — динатриевая соль 1-аминодецил-N,N-бис (ω-этансульфокислоты); Б — динатриевая соль 1-аминогексадецил-N,N-бис (ω-этансульфокислоты). Деформационные колебания: 722 см⁻¹, 750 см⁻¹ — наличие полиметиленовой цепи; 1380—1382 см⁻¹ — метильная группа; 1470 см⁻¹ — метиленовая группа. Валентные колебания: 1060 см⁻¹ — алифатический амин; 1200 см⁻¹ — сульфонат; 2855 см⁻¹ — метиленовая группа.

14

12

дана характеристика препарата, ИК-спектры которого снимали на спектрометре UR-10 (рисунок).

Натриевая соль 1-аминодецил-N-этансульфокислоты, образовавшаяся при синтезе вместе с динатриевой солью 1-аминодецил-N,N-бис (ш-этансульфокислоты) и перешедшая в слой изобутилового спирта, была получена после перекристаллизации из этанола. Изобутиловый экстракт содержал также в некотором количестве динатриевую соль 1-аминодецил-N,N-бис (ш-этансульфокислоты). Последнюю можно отделить от натриевой соли аминодецил-N-этансульфокислоты, учитывая их различную растворимость в этаноле.

Синтез динатриевых солей 1-аминогексадецил-N,N-бис (о-этансульфокислоты) из натриевых солей 1-аминоалкил-N-этансульфокислоты и бромэтансульфокислоты проводили по следующей методике. В трехгордой колбе с мешалкой и обратным холодильником в 72 мл воды раство-

A

34

34

Б

30

30

32

28

16

16

ряли 0,15 моля натриевой соли бета-бромэтансульфокислоты и прибавляли 300 мл 96%-ного этанола. К полученному 77%-ному спирто-водному раствору натриевой соли бета-бромэтансульфокислоты добавляли 0,15 моля натриевой соли 1-аминогексадецил-N-этансульфокислоты. Реакция длилась 21 ч при кипячении. В ходе реакции образовался бромистый водород, который нейтрализовали 3%-ным раствором едкого натра (0,15 моля NaOH) в течение 0,5 ч при 50 °С. После выпаривания растворителя сухой остаток растворяли в 1425 мл воды и экстрагировали бутиловым спиртом дважды по 300 мл. В водном слое, кроме неорганических солей и непрореагировавшей натриевой соли бета-бромэтансульфокислоты, обнаружили динатриевую соль 1-аминогексадецил-N,Nбис (о-этансульфокислоты). Чистый продукт получили после перекристаллизации сухого остатка из этанола (табл. 2). Из слоя бутанола выпаривали растворитель и сухой остаток обрабатывали этанолом. При этом регенерировалась непрореагировавшая натриевая соль 1-аминогексадецил-N-этансульфокислоты. Чистота полученных динатриевых солей 1-аминоалкил-N,N-бис (о-этансульфокислоты) колебалась в пределах 92-97%. Выходы чистых гомологов низкие, особенно у веществ с короткой алкильной цепью. Это объясняется трудностями в разделении компонентов реакции.

Следует отметить, что приведенные методы получения динатриевых солей 1-аминоалкил-N,N-бис (ω-этансульфокислоты) различаются исходным сырьем и выходами конечных продуктов. В первом случае исходными веществами служат алифатические амины и галоидоэтансульфокислоты, во втором — галоидные алкилы, таурин и галоидоэтансульфокислоты. Выход конечных индивидуальных веществ на конвертируемые амины составляет примерно 50, а выход на конвертируемый галоидалкил 25%.

Выводы

1. Разработана методика синтеза новых ПАВ типа динатриевых солей 1-аминоалкил-N,N-бис (ш-этансульфокислоты).

2. Синтезированы пять членов гомологического ряда динатриевых солей 1-аминоалкил-N,N-бис (ш-этансульфокислоты) с длиной алкильной цепи С8, С10, С12, С14 И С16.

3. Синтезированные вещества обладают хорошей диспергирующей способностью и могут служить основой для составления композиций бесфосфатных моющих средств.

ЛИТЕРАТУРА

- 1. Файнгольд С. И., Томсон Р., Маспанов Н. А. Синтез и коллоидно-химические свойства н-алкиламиноэтилсульфатов и н-алкиламиноэтилсульфонатов. — Масложировая промышленность, 1976, № 10, 22-26.

- жировая промышленность, 1976, № 10, 22-26.
 Томсон Р., Файнгольд С. Синтез алкиламиноэтилсульфонатов. Изв. АН ЭССР, Хим. Геол., 1976, 25, № 4, 297-301.
 Parris, N., Weil, J. K., Linfield, W. M. Amphoteric lime soap dispersing agents. J. Amer. Oil Chem. Soc., 1973, 50, N 12, 509-512.
 Kumoto, M., Nemoto, Y. Synthesis and properties of alkylimino-bis(2-hydroxypropane-3-sulfonates). Chem. Abstr., 1966, 64, 12973.
 Michich, T. J., Sucharsky, M. K., Weil, J. K., Linfield, W. M. The synthesis and surface-active properties of sulfopropyl esters of N substituted iminodiacetic acids. J. Amer. Oil Chem. Soc., 1972, 49, N 11, 652-655.
 Адамсон А. Физическая химия поверхностей. М., 1979, 402.

Институт химии Академии наук Эстонской ССР

Поступила в редакцию 1/II 1982

1-AMINOALKÜÜL-N,N-BIS(ω-ETAANSULFOHAPPE) NAATRIUMISOOLAD

1. Süntees

Artiklis on esitatud 1-aminoalküül-N,N-bis(ω -etaansulfohappe) naatriumisoola tüüpi pindaktiivsete ühendite süntees. On kirjeldatud viit uut preparaati, mille alküülahela pikkus on C₈, C₁₀, C₁₂, C₁₄, C₁₆. Seda tüüpi pindaktiivsed ained on head dispergaatorid ja neid võib kasutada fosfaate mittesisaldavate pesemisvahendite koostisosana.

Rutt TOMSON, S. FAINGOLD, D. ROIZ

SODIUM SALTS OF 1-AMINOALKYL-N,N-BIS(@-ETHANESULFOACID)

1. Synthesis

The paper deals with the synthesis of surface-active agents of the type of 1-aminoalkyl-N,N-bis(ω -ethanesulfoacid). Five new surface-active agents with the alkyl chains C₈, C₁₀, C₁₂, C₁₄, C₁₆, were synthesized.

It was proved that surface-active agents of this type have a good dispersion ability and can be used for the composition of detergents not containing phosphates.