EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. 32. KÕIDE KEEMIA. 1983, NR. 2

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 32 ХИМИЯ. 1983, № 2

https://doi.org/10.3176/chem.1983.2.04

УДК 543.056: 553: 543.422

Елена КЛАОС-ХАЧАТУРЯН, Реэт ТАЛЬКОП, В. ОДИНЕЦ

ПОДГОТОВКА ПРОБ АРГИЛЛИТОВ ДЛЯ АТОМНО-АБСОРБЦИОННОГО АНАЛИЗА

(Представил О. Эйзен)

Наиболее трудная проблема при анализе аргиллитов — разработка методики быстрой подготовки проб так, чтобы в растворе оставались все элементы, подлежащие определению. Полное разрушение структуры силикатов и высвобождение катионов может быть достигнуто в результате взаимодействия пробы с кислотами или ее сплавления со щелочными плавнями.

В настоящей работе проведено сравнительное изучение двух способов вскрытия проб аргиллитов и их обогащенных фракций: кислотного разложения и разложения путем сплавления с метаборатом лития. Цель работы — изучение зависимости конечных результатов анализа от способа разложения пробы и выбор наиболее экспрессной, точной и безвредной методики переведения твердых проб в растворы.

Экспериментальная часть

Подготовка проб к атомно-абсорбционному анализу способом кислотного разложения производилась следующим образом. Навеску пробы, 0,5—1,0 г, помещали в платиновую чашку, приливали 10—20 см³ фтористоводородной кислоты, 7—10 см³ хлорной кислоты, 3—6 см³ азотной кислоты и нагревали до выделения паров хлорной кислоты. Применялись концентрированные кислоты марки не ниже х. ч.

Чашку охлаждали, стенки чашки обмывали бидистиллированной водой и снова нагревали до выделения паров хлорной кислоты. Еще раз добавляли воду и нагревали до полного удаления хлорной кислоты. К остатку приливали 20 см³ концентрированной соляной кислоты, 20 см³ воды и нагревали до растворения осадка. Раствор охлаждали, переносили в мерную колбу на 100 см³, разбавляли водой до метки и перемешивали.

Для сплавления с метаборатом лития [¹] навеску с исходным материалом (0,5—1,0 г), истертым до крупности d=0,074 мм и обожженным при температуре 500 °С, помещали в платиновую чашку и перемешивали с метаборатом лития (2,5—5,0 г), истертым до крупности d=0,074 мм. Чашку ставили на 4—6 мин в печь (t 900 °С). Затем ее, еще не совсем остывшую, опускали в полиэтиленовый стакан и заливали горячей соляной кислотой (0,9 М). В стакан тотчас же помещали магнитную мешалку и перемешивали до полного растворения плава (15—30 мин). После охлаждения раствор переводили в мерную колбу (емкость 50—100 см³), стакан и чашку несколько раз обмывали теплым раствором соляной кислоты (0,9 М). Испытуемый охлажденный раствор разбавляли до метки соляной кислотой (0,9 М) и перемешивали.

Таблица 1

Инструментальные условия

Параметры прибора	Мо	Co	Ni	Cu	v	
Длина волны, нм Ширина щели, нм	313,3 0,4	240,7 0,4	232,0 0,4	324,8 0,8	318,3 0,4	
Горелка		N ₂ O				
Высота наблюдения, см Расход воздуха, л/мин Расход ацетилена, л/мин Расход закиси азота, л/мин Ток лампы, мА	$0,6 \\ 4,5 \\ 1,6 \\ - \\ 24$	$ \begin{array}{c c} 0,8 \\ 4,5 \\ 1,0 \\ \hline 12 \end{array} $	0,7 4,5 1,0 	$0,5 \\ 4,5 \\ 0,8 \\ - \\ 4$	0,7 	

В растворах, подготовленных вышеописанными способами, измеряли величину атомного поглощения резонансного излучения нейтральными атомами определяемого элемента на «Руе Unicam SP-1900». Условия определения рассматриваемых элементов приведены в табл. 1. Учет фона производили с помощью дейтериевого корректора фона «SP-1960». Правильность полученных результатов проверяли рентгено-флюоресцентным методом и методом «введено-найдено». Рентгено-флюоресцентный анализ провел Р. Я. Юга.

Результаты и обсуждение

Наиболее полное разложение большинства фракций аргиллитов с фтористоводородной кислотой обусловлено образованием легколетучих соединений кремния, что приводит к разрушению структуры образца. Для удаления избытка фтористоводородной кислоты, который не толькомешает проведению анализа, но и оказывает значительное влияние на поглощение элементов, при обработке пробы используют ее в сочетании с кислородсодержащими кислотами, чаще с серной кислотой.

Однако из-за значительного процента в аргиллитах железа, алюминия, свинца, дегидратированные сульфаты которых растворяются с большим трудом, считают целесообразной замену серной кислоты на хлорную [²].

Соли хлорной кислоты, кроме солей калия, рубидия и цезия, легко растворимы в воде. Избыток хлорной кислоты при выпаривании удаляется легче, чем избыток серной, к тому же потери за счет разбрызгивания меньше. Из табл. 2 видно, что использование хлорной кислоты дает существенный выигрыш во времени при разложении аргиллитов. Заметно также некоторое систематическое уменьшение количества молибдена при применении серной кислоты, что, по-видимому, связано с различной химической формой молибдена в сернокислых и хлорнокислых растворах, обладающих различной способностью поглощать. Именно использование калибровочного графика, не учитывающего состояние молибдена в растворах, вводимых в пламя, и приводит к систематической ошибке.

Удаление избытка кремния и введение в процессе разложения в анализируемую пробу веществ, оказывающих минимальное влияние на аналитический сигнал, обусловливает преимущества кислотного способа разложения проб при определении нелетучих микрокомпонентов аргиллитов. Однако, на наш взгляд, существует недостаток, который становится особенно заметным при массовых анализах: это образование весьма токсичных газообразных соединений. SiF₄, GeF₄, AsF₅, SeF₆, TeF₆

Таблица 2

Номер	Время разл	южения, ч	Найденные содержани Мо, мкг/г		
пробы	H ₂ SO ₄	HCIO ₄	H ₂ SO ₄	HClO ₄	
I II III IV V	18 20 18 24 48	4 3 6 5	96 90 370 402 100	101 95 390 430 112	

Результаты применения различных кислот для удаления флюоридиона

Таблица 3

Сравнительные данные определения Мо в аргиллитах

	Способ переведения	Найденные содержания Мо, мкг/мл		
метод определения	твердых проб в раствор	проба I	проба II	
	кислотный	432±10	100±4	
Атомно-абсорбционный	сплавление с метабора- том лития	1100±12	300±5	
Рентгено-флюоресцентный	прямой из твердых проб	433±5	85±2	

появляются при разложении аргиллитов в количествах, превышающих их предельно допустимые концентрации (ПДК) в воздухе [³]. В связи с этим рассмотрена возможность замены кислотного способа переведения проб в раствор способом сплавления с метаборатом лития. Метод сплавления с метаборатом лития для разложения силикатных горных пород и других геологических материалов в последнее время получает все большее распространение [⁴]. Описано и применение этого метода для определения породообразующих элементов [¹].

Нами изучена возможность применения указанного способа разложения проб для определения микрокомпонентов аргиллитов, в частности Мо, V, Co, Ni, Cu. Для этого необходимо определять микрограммовые количества элементов на фоне большого избытка соединений кремния и метабората лития. По данным табл. 3 видно систематическое завышение результатов анализа при переведении твердых проб в растворы сплавлением с метаборатом лития.

Анализ (сканирование длины волны, сравнение градуировочных графиков, построенных по стандартным растворам и по растворам пробы с добавками), показал отсутствие селективных спектральных помех и наличие химических. Однако в некоторых пробах, несмотря на отсутствие химических помех, что вытекает из параллельности калибровочных графиков и графиков метода добавок, результаты анализа оказались завышенными.

Введение в калибровочные растворы в соответствующих концентрациях метабората лития и окиси кремния, обычно удаляемого при кислотном разложении, привело к совпадению результатов рентгено-флюоресцентного и атомно-абсорбционного анализов. Отсюда можно сделать

Таблица 4

Способ разло- жения твер- дых проб	Метод определения концентрации	Учет несе- лективных помех	Найденные содержания, мкг/г				
			Mo	V	Cu	Ni	Co
Смесью кислот	по калибровочному графику	без учета	430	790	108	148	30
	по методу добавок	с учетом	450	820	100	150	22
		без учета	614	820	100	150	22
Сплавление с LiBO ₂	по калибровочному графику	без учета	800	780	105	180	85
	по методу добавок	с учетом	433	800	100	150	23
		без учета	1100	800	115	200	90

Сравнительные данные о влиянии способа разложения проб аргиллитов на определение микрокомпонентов

вывод о наличии неселективных помех, обусловленных молекулярным поглощением света, а также рассеянием и поглощением света неиспарившимися частицами солей, которые лишь частично устраняет дейтериевый корректор фона. Его применение эффективно в интервале длин волн 200,0—350,0 нм (в этот интервал входят длины волн рассматриваемых нами элементов), в котором дейтериевая лампа дает излучение, пригодное для коррекции фона. Однако в ряде работ [^{5–8}] сообщается о возможных систематических ошибках при использовании дейтериевого корректора фона.

Для проверки наличия неселективного поглощения при анализе проб аргиллитов был оценен вклад рассеяния в величину измеряемого поглощения путем измерения интенсивности линий 311,2 нм для молибдена и 239,3 нм для кобальта, расположенных вблизи их аналитических линий. По данным табл. 4 видно, что при определении молибдена и кобальта имеет место неселективное поглощение, почти в 3 раза завышающее результаты анализа. При определении ванадия (пламя закись азота — ацетилен) гораздо больше снижается уровень неселективных помех, чем при определении других рассматриваемых элементов. Помехи других элементов легко устранить путем многократного разбавления проб. Для никеля и меди не удалось провести учет неселективного поглощения из-за сильных шумов на нерезонансных линиях 231,4 и 321,1 им. И в этом случае помогало разбавление проб не менее чем в 20 раз. Таким образом, полученные нами данные подтверждают мнение [5], что применение дейтериевого корректора фона в ряде случаев может привести к искаженным результатам.

Для получения не искаженных помехами результатов следует разбавлять пробы или же, когда этого не позволяет чувствительность методики, например, при определении кобальта, применять метод добавок, одновременно учитывая неселективное поглощение по нерезонансной линии, отличающейся от резонансной не более чем на 5 нм. Пробы пиритной фракции аргиллитов целесообразно переводить в раствор способом кислотного разложения, ибо избыток железа при высоких температурах имеет тенденцию сплавляться с платиной тигля.

Выводы

1. Проведено сравнительное изучение способов (кислотного разложения и сплавления с метаборатом лития) подготовки проб аргиллитов к атомно-абсорбционному определению Мо, V, Co, Ni и Cu.

2. Выяснено, что способ сплавления проб с метаборатом лития более удобный, экспрессный и менее токсичный.

3. Установлено, что имеет место сильное влияние неселективных помех на определение микрокомпонентов, рассмотрены способы устранения этих помех.

ЛИТЕРАТУРА

- 1. Воронкова М. А., Буткина Г. А., Пятова В. Н., Степанова Н. А., Воробьев В. С., Костюкова Л. М. Использование метода сплавления с метаборатом лития в атомно-абсорбционном анализе. В сб.: Методы химического анализа мине-рального сырья. М., 1977, в. 15, 89—95.
- 2. Щербаков В. И., Карякин А. В., Банных Л. Н., Лебедев В. И. Подготовка некоторых природных объектов для пламенного атомно-абсорбционного и эмиссионного спектрального анализа. — Заводская лабор., 1977, № 8, 957—959.
- Лазарев Н. В. Химически вредные вещества в промышленности. М., 1951, ч. 2, 36, 253.
- 4. Методические основы исследования химического состава горных пород, руд и минералов. М., 1979, 168.
- 5. Massmann, H. Entwicklungsstand der Atomabsorptionsspektrometrie. - Angew. Chem., 1974, B. 86, 542.

- Höhn, R., Jackwerth, E. Nicht kompensierbarer Untergrund als systematischer Fehler bei der Atomabsorptionsspektrometrie. Anal. Chim. Acta, 1976, B. 85, 407.
 Cücer, S., Massmann, H., El Bohary, Z. Zur Untergrundmessung in der Atom-absorptionsspektrometrie. Chim. Acta Turc., 1976, B. 4, 1.
 Рчеулишвили А. Н. Атомно-абсорбционная спектрометрия с графитовой печью, с отделением определяемого элемента методом испарения. ЖАХ, 1981, 36, рим. 10, 1890. вып. 10, 1889-1894.

Институт химии Академии наук Эстонской ССР

Поступила в редакцию 13/IV 1982

Jelena KLAOS-HATŠATURJAN, Reet TALKOP, V. ODINETS

ARGILLIIDIPROOVIDE ETTEVALMISTAMINE AATOMIABSORPTSIOON-ANALÜÜSIKS

Artiklis on võrreldud argilliidiproovide aatomiabsorptsioonanalüüsiks ettevalmistamise meetodeid. Kõige kiirem ja vähima toksilisusega on proovide sulatamine liitiunimetaboraadiga. On kindlaks tehtud mitteselektiivsete mõjude esinemine mikrokomponentide määramisel ja vaadeldud nende kõrvaldamise teid.

Yelena KLAOS-KHATCHATURYAN, Reet TALKOP, V. ODINETS

PREPARATION OF ARGILLITE SAMPLES FOR ATOMIC ABSORPTION ANALYSIS

A comparison was carried out of the methods of decomposition of argillite samples and their concentrated fractions for the determination of Mo, V, Co, Ni and Cu by the atomic absorption methods. By the acid method, toxic gaseous SiF₄, GeF₄, AsF₅ and SeF₆ are formed in concentrations higher than their maximum permissible concentration in the air. The possibility of replacing the acid decomposition by the method of melting with lithium borate was under consideration. By the analysis of argillites introduced into the solution by melting with LiBO₂, systematic errors due to nonselective noise were detected.

It was found that the use of a deuterium background corrector, especially in the case of Mo and Co, leads to faulty results. A method for eliminating nonselective absorption has been suggested.

3 ENSV TA Toimetised. K 2 1983