ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 30 ХИМИЯ. 1981, № 2

УДК 547.435:661.185

Д. РОЙЗ, С. ФАЙНГОЛЬД, Рутт ТОМСОН

СИНТЕЗ Na-COЛЕЙ АЛКИЛАМИНОЭТАНСУЛЬФОКИСЛОТ НА ОСНОВЕ ОЛЕФИНОВОГО СЫРЬЯ

D. ROIZ, S. FAINGOLD, Rutt TOMSON. ALKÜÜLAMINOETAANSULFOHAPETE NAATRIUMISOOLADE SÜNTEES OLEFIINSE TOORAINE POHJAL

D. ROIZ, S. FAINGOLD, Rutt TOMSON. SYNTHESIS OF ALKYLAMINOETHANESULPHONATES FROM TECHNICAL OLEFINS

(Представил О. Эйзен)

Исследованием [¹] установлены высокие поверхностно-активные свойства Na-солей алкиламиноэтансульфокислот. Эти вещества обладают также высокой диспергирующей способностью в отношении Ca-мыл, что обуславливает возможность их использования в бесфосфатных моющих композициях. Они не оказывают заметного раздражающего действия на кожу и биологически окисляются. В данной работе изучалась возможность получения Na-солей алкиламиноэтансульфокислот общей формулы R—CH (CH₃)—NHCH₂CH₂SO₃Na, на основе доступного олефинового сырья. Представляет интерес использование хлоралканов, которые можно получать в промышленных масштабах из олефинового сырья путем выделения узких фракций с последующим гидрохлорированием.

Нами были синтезированы 2-хлорпарафины из индивидуальных реактивных олефинов — децена и додецена, а также из узких технических фракций олефинов крекинга парафинов. Олефины гидрохлорируют газообразным HCl в присутствии хлоридов металлов (ZnCl₂, FeCl₃, BiCl₃, TiCl₄), растворенных в полярных растворителях [²]. Хорошие выходы 2-хлоралканов получаются в присутствии ZnCl₂, растворенного в сульфолане. Количество катализатора по отношению к олефину составляет 20—30 масс. %. Присоединение HCl к олефинам крекинга парафинов затруднено наличием примесей диолефинов, циклоолефинов, ароматики и парафинов [3]. Примеси вызывают побочные реакции, значительно снижающие выходы и качество продуктов синтеза, увеличивают расход катализаторов [4]. При гидрохлорировании технической фракции конверсия олефинов значительно снижается по сравнению с аналогичным опытом гидрохлорирования индивидуальных олефинов. Хроматографический анализ показывает наличие значительного количества непревращенных олефинов. Техническая фракция олефинов должна быть предварительно очищена от циклоолефинов, диолефинов и возможных малых количеств сернистых соединений. Очищенную узкую фракцию олефинов гидрохлорируют по методике, применяемой для индивидуальных олефинов. Взаимодействие вторичных хлорпара-

6 ENSV TA Toimetised. K 2 1981

финов с Na-солью таурина осуществляется в среде высококипящего растворителя, например, в бензиловом спирте, при атмосферном давлении, или в автоклаве.

Экспериментальная часть

Синтез 2-хлоралканов из индивидуальных олефинов. Через смесь олефина (децена-1 или додецена-1) и ZnCl₂, растворенного в сульфолане, барботируют сухой HCl в течение 3—4 ч при температуре 80—90 °C. Количество катализатора по отношению к олефину составляет 20—30 масс. %. По окончании реакции смесь охлаждают, при этом реакционная масса расслаивается. Верхний слой, содержащий хлоралкан, отделяют, промывают водой и сушат CaCl₂. Определяют содержание хлора в продукте (см. табл.). По данным хроматографического анализа и по анализу на содержание хлора можно заключить, что полученный сырой продукт представляет собой практически чистый 2-хлоралкан.

2-Хлоралкан	Содержание хлора, %		Конверсия
	теоретич.	практич.	олефина, %
2-Хлордекан	20,1	19,8	98,5
2-Хлордодекан	17,3	16,8	97,0
2-Хлортетрадекан	15,3	11,9	78,0
Упорпенталекан	14.4	10.0	76.0

Содержание хлора в продуктах гидрохлорирования и конверсия олефинов

Очистка узких технических фракций олефинов. Фракции олефинов $(C_{14} \text{ и } C_{15})$ обрабатывают $ZnCl_2$ в количестве 10—20 масс. % при температуре 50—70° в течение 1 ч. Затем $ZnCl_2$ отделяют, а фракцию перемешивают с двухкратным количеством диэтиленгликоля в течение 0,5 ч при 50—60°. Гликоль отделяют, фракцию промывают водой и сушат $CaCl_2$.

Гидрохлорирование узких технических фракций олефинов осуществляется по методике, применяемой для индивидуальных олефинов. Температура процесса 90—100° и длительность 5—7 ч. После окончания реакции продукт промывают, сушат и определяют содержание хлора (см. табл.). Полученные технические 2-хлортетрадекан и 2-хлорпентадекан идентифицировались хроматографически.

Реакция 2-хлордекана и 2-хлордодекана с таурином в среде бензилового спирта. В 200 мл 80% этанола растворяют 0,5 *M* Na-соли таурина. Прибавляют 150 мл бензилового спирта и отгоняют этанол и воду до температуры 120°. 0,2 *M* 2-хлоралкана дозируют в реакционную смесь и кипятят при 135—140° в течение 20 ч. Смесь охлаждают, добавляют 30 мл воды и помещают в делительную воронку. Нижний слой содержит таурин и NaCl. Слой бензилового спирта, содержащего алкиламиноэтансульфонат, промывают 2×50 мл тексана с целью удаления непрореагировавшего хлорида и продукта дегидрохлорирования. Раствор алкиламиноэтансульфоната в бензиловом спирте высушивают, сухое вещество промывают эфиром. Выходы 2-дециламиноэтансульфоната и 2-додециламиноэтансульфоната составляют 30—35% теоретического. Получение 2-тетрадецил- и 2-пентадециламиноэтансульфонатов в автоклаве. В качающийся автоклав загружают 100 мл 90% этанола, 0,2 М Na-соли таурина и 0,08 *М* технического 2-хлорпарафина с содержанием основного вещества 76—78%. Нагревают до 150—160° в течение 8-10 ч, давление при этом поднимается до 5-6 атм. После охлаждения смеси прибавляют 80 мл этанола и 100 мл воды. Непрореагиро-вавший 2-хлорпарафин экстрагируют 50 мл гексана. Спиртоводный раствор высушивают, сухое вещество растворяют в минимальном количестве горячей воды (около 300 мл) и экстрагируют 200 мл бутанола. Выходы 2-тетрадецил- и 2-пентадециламиноэтансульфонатов составляют 40-45% теоретического.

Примечание. 2-Тетрадецил- и 2-пентадецил-аминоэтансульфонаты могут быть получены также в среде высококипящих растворителей при атмо-сферном давлении; в свою очередь 2-децил- и 2-додециламиноэтансульфонаты можно синтезировать в автоклаве.

Выволы

Синтезированы индивидуальные вторичные децил- и додециламиноэтансульфонаты натрия и технические вторичные тетрадецил- и пентадециламиноэтансульфонаты. Показана возможность использования узких технических фракций олефинов крекинга парафинов для синтеза вторичных алкиламиноэтансульфонатов натрия.

ЛИТЕРАТУРА

- 1. Томсон Р., Файнгольд С., Маспанов Н. Коллоидно-химические свойства н-алкиламиноэтилсульфатов и -сульфонатов. Изв. АН ЭССР, Хим. Геол., 1976, т. 25, № 3, с. 193—198.
- 2. Bakker, P. Preparation of Amino Detergents via Addition of Hydrocloric Acid Баккен, Г. Периноп об напол Бесегдения чта Addition of Anynocione Acta to Long-Chain a-Olefins. — Chem., Physik.-chem. und Anwendungstechnik der grenzflächenaktiven Stoffe. 6. Kongr. der grenzflächenaktiven Stoffe. Zürich, 1972, Bd. 1, S. 325—336.
 Гуревич В. Р. и др. Производство и потребление высших линейных олефинов.
- Тематический обзор ЦНИИТЭНефтехим. М., 1978, с. 38—42. 4. Скляр В., Лебедев Е., Закупра В. Высшие моноолефины. Киев, 1964.

Институт химии Академии наук Эстонской ССР

Поступила в редакцию 26/IX 1980