EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. 29. KÕIDE KEEMIA. 1980, NR. 2

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 29 ХИМИЯ. 1980, № 2

УДК 662.73

Ep. 5.66

И. КЛЕСМЕНТ, К. УРОВ, Марет КУУЗИК, В. ВЫСОЦКАЯ

ХАРАКТЕРИСТИКА БИТУМОИДА И СМОЛЫ ПОЛУКОКСОВАНИЯ ВИТРИНИТОВОГО КАМЕННОГО УГЛЯ КУЗБАССА

Наличие алифатических структур в органическом веществе (OB) каменных углей до недавнего времени было спорным вопросом. Сейчас известно, что в твердых каустобиолитах присутствуют реликтовые углеводороды — нормальные и изопреноидные алканы, но их состав изучен меньше, чем состав нефтяных углеводородов. Показано [^{1, 2}], что в каменных углях наивысшей концентрации достигают *н*-парафины $C_{19}-C_{24}$, имеющие невысокий коэффициент нечетности (KH) — отношение концентрации гомологов с нечетным и четным числом атомов углерода. Изопреновых углеводородов мало, отношение $iC_{19}: iC_{20}$ близко единице или превышает ее. В горючих сланцах [³] цепи *н*-алканов более длинные (высокий KH) или более короткие (низкий KH) и отношение $iC_{19}: iC_{20}$ в большинстве случаев низкое.

Цель настоящего исследования — изучение состава битумоида и смолы полукоксования каменного угля и установление генетической связи между ними. Объектом исследования был витринитовый концентрат, выделенный из жирного каменного угля Кузбасса (шахта Кузбасская). Исходный уголь имел следующий состав [4] (вес. %): A^c 12,4; W^a 0,90; витринит 86; фюзинит 8; семинит 4. Элементный состав представлен в табл. 1. Использовался обогащенный уголь с содержанием A^c 2,6 и W^a 1,2%.

Таблица 1

Состав угля	С	Н	N	S	0	H/C	
Витринит Битумоид А Битумоид С	86,3 87,1 87,8	5,7 8,1 7,5	2,3 1,4 1,7	0,5 0,5	7 2,9 2,5	0,79 1,12 1,02	

Элементный состав ОВ витоннита и битимоннов

Анализ битумоида

Битумоид A экстрагировали из витринита хлороформом в аппарате Сокслета в течение одного месяца. Остаток обрабатывали 10%-ной соляной кислотой и потом экстрагировали в течение одного месяца смесью бензола и метанола (3:1) для выделения битумоида C. Биту-

1 ENSV TA Toimetised. K 2 1980

8p.5.66

И. Клесмент, К. Уров, Марет Куузик, В. Высоцкая

Таблица 2

Групповой состав битумоидов (ве	c. %)		
Состорядочно битимонда	Битум	иоид	
Составляющие он гумонда	A	С	
Парафины Алкилбензолы Полициклические ароматические соединения	18,4 5,4 14,7	4,8 3,4 11,6	
Нейтральные гетероатомные соединения: малополярные сильнополярные	9,5 21,9	17,1 43,1	
Кислоты: эфирорастворимые карбоновые высокомолекулярные водорастворимые	5,5 18,5 6,1	6,2 12,9 0,9	
719 T] i 19	23	
	16 18	20 22 25	
	17 19		6 271
74		MIN	28
	MMIN		29
40 50 60 мин 0 40	50	60	м

Рис. 1. Хроматограммы парафинов битумонда A (I) и метиловых эфиров кислот битумонда C (II). (Номера означают количество углеродных атомов в соединениях с нормальным углеродным скелетом.) i16-i20 — изопренонды. Колонка 3,6 M \times 3 MM; 7% E-301 на целите 545 (0,125-0,16 MM).

моиды очищали от серы при помощи медных стружек; их выходы: битумоида A 0,6 и C 3,4% от витринита.

Кислотную часть выделяли из битумондов 0,5 н. раствором КОН в этаноле. Часть кислот оказалась нерастворимой в эфире.

Групповой состав нейтрального битумоида определяли с помощью препаративной тонкослойной хроматографии [⁵]. Соединения, остающиеся на стартовой линии, считали сильнополярными гетероатомными соединениями. Газохроматографический анализ проводили на аппарате Хром-4, для чего кислоты переводились в метиловые эфиры.

Элементный и групповой составы битумондов представлены в табл. 1 и 2. Характерно высокое содержание битумонда С; так как

Рис. 2. Н-ЯМР- и ИК-спектры суммарных битумоидов А и С.

топливо малозольное, эта часть битумоида была связана с OB. Вторая особенность — низкое содержание гетероэлементов и кислотных составляющих, которое согласуется с низким содержанием кислорода в исходном угле. Обычно битумоид C характеризуется высоким содержанием гетероэлементов и соответствующих групп, в настоящем случае различия по этим показателям обоих битумоидов не так значительны.

Парафиновых углеводородов довольно много, и в обоих битумоидах их составы близки. Они (см. рис. 1) таковы же, как и обычный состав парафинов в каменных углях: присутствуют *н*-парафины $C_{13}-C_{30}$, концентрационный максимум которых близок к C_{20} , КН $\simeq 1$. Изопреновые углеводороды присутствуют в небольшом количестве, преобладает iC_{19} . Оба битумоида содержат также летучие ароматические соединения, которые имеют сходный состав.

На рис. 1 дана также хроматограмма кислот битумоида C. Жирные кислоты имеют подчиненное значение, преобладание гомологов с четным числом атомов углерода невысокое. В отличие от большинства других каустобиолитов, содержание в битумоиде C кислот C_{16} и C_{18} низкое, но много пристановой кислоты iC_{19} . Ее пик широкий, но ему соответствуют и другие соединения. Состав кислот сложнее состава парафинов, среди них много соединений, вероятно, ароматических, идентифицировать которые не удалось.

На рис. 2 представлены ЯМР- и ИК-спектры битумоидов (спектрометры TESLA BC 478 и UR-20). По данным ЯМР-спектра, битумоид А отличается высоким содержанием длинных неразветвленных углеродных цепей (1,1 м. д.) и соответственно низким содержанием концевых метильных групп (0,9 м. д.). Небольшое количество водорода находится на месте разветвления углеродных цепей (1,9 м. д.), значительно боль-

1*

Рис. 3. Хроматограммы суммарной смолы полукоксования витринита (I) и фракций алифатических углеводородов (II). (Цифры указывают число атомов углерода в молекуле.) 9-31 - н-углеводороды; i13-i20 -изопреновые углеводороды; I-23 -ароматические углеводороды: I -метилбензол; 2 - этилбензол; 3 - 1,3- и 1,4-диметилбензол; 5 -изопропилбензол; 6 -н-пропилбензол; 7 -1-метил-3-этил- и 1-метил-4-этилбензолы; 8 -1-метил-2-этил- и 1,3-5-триметилбензолы; 9 - 1,2,4-триметилбензол; 10 - 1,2,3-триметилбензолы; 11 -индан и тетраметилбензолы; 2 -диметилэтилбензолы; 3 - 1,2,4,5- и 1,2,3,5-тетраметилбензолы; 12 -диметилэтилбензол; 13 - 1,2,4,5- и 1,2,3,5-тетраметилбензолы; 14 -метилинден и др.; 15 - нафталин; 16 -метилтетралин; 17 - 2-метилнафталин; 18 - 1-метил-2-этил- и 2,7-диметилбензолы; 22 - 1,7-, 1,6- и 1,3-диметилнафталины; 23 - 1,2-диметилнафталины, 23 - 2,6-и 2,7-диметилнафталины; 23 - 1,7- мистилнафталины, 3% E-301 на инертоне AW-HMDS.

ше его в метильных группах, связанных с ароматическим ядром $(2, 4 \ m. \partial.)$. Битумонд C заметно отличается от битумонда A: здесь меньше длинных цепей, больше ароматических структур и связанных с ними метильных групп.

На ИК-спектрах четкость разделения отдельных полос поглощения не очень хорошая, что свидетельствует о сложном составе битумоидов. Поглощение в области 1700—1740 с m^{-1} слабое, это указывает на невысокое содержание карбонильных и сложноэфирных групп и согласуется с низким содержанием кислорода в битумоидах. Гидроксильных групп (3200—3600 с m^{-1}) в битумоиде С значительно больше, чем в битумоиде A.

Полученные данные показывают, что битумонд A экстрагируется из витринита трудно, что обусловливает повышенный выход битумонда C; в нем содержится мало гетероэлементов, но довольно много прямолинейных углеродных цепей. Парафины и жирные кислоты имеют бактериальное происхождение. Количество последних среди других кислот небольшое.

Состав смолы полукоксования

Дебитуминированный уголь подвергался полукоксованию в алюминиевой реторте по ГОСТ 3168-66. Выход продуктов полукоксования (вес. %): смола 8,5; кокс 77,4; вода 5,1; газ и потери 9,0.

Состав газа полукоксования (об. %) определяли на аппарате УХ-2 [6]: H_2 0,4; N_2 1,0; CO 7,8; CO₂ 2,7; H_2S 1,0; CH₄ 62,4; C₂H₄ 2,9; C₂H₆ 13,8; C₃H₆ 0,2; C₃H₈ 3,9; изо-C₄H₁₀ 0,3; изо-C₄H₈ 1,2; C₄H₁₀ 1,1; *транс*-C₄H₈ 0,5; цис-C₄H₈ 0,6. Газ отличается низким содержанием водорода и высоким гомологов метана. Ненасыщенных углеводородов в нем мало, что свойственно продуктам термического разложения топлива, содержащего мало водорода и соответственно отличающегося низким содержанием летучих веществ [⁶].

Характеристика смолы полукоксования: d_4^{20} 1,053; n_D^{20} 1,556. Ее выход и содержание в ней фенолов относительно низки [7], что частично может быть обусловлено предварительным дебитуминированием.

Групповой состав (методика анализа та же, что и при анализе битумонда) смолы (вес. %): парафины 12,4; олефины 7,4; алкилбензолы 4,6; полициклическая ароматика 18,0; малополярные нейтральные кислородные соединения 15,8; сильнополярные 34,2; фенолы 7,6. Главные компоненты смолы — разнообразные гетероатомные соединения. Алифатических углеводородов больше и ароматических меньше, чем обычно в смоле полукоксования каменного угля [7].

Хроматограмма суммарной смолы представлена на рис. 3. Основные

81

компоненты в смоле — низкокипящие ароматические углеводороды: бензол, толуол и ксилолы, хотя считается [7], что их содержание в смоле низкотемпературной деструкции невысокое. Присутствует еще много соединений, кипящих в пределах 150-230 °С. Парафины и олефины смолы — преимущественно нормального строения (рис. 3), основная их часть — это C10-C23, но последний член ряда C31. Завышены пики С₁₇ и С₁₈. Это объясняется тем, что с пиками этих *н*-парафинов совпадают также пики изопреноидов *i*С₁₉ и *i*С₂₀. В небольших количествах присутствуют низкокипящие изопреноиды. Не наблюдается повышенной концентрации «нечетных» гомологов, что служит признаком бактериального происхождения указанных цепей.

Из ксилолов в смоле полукоксования, в отличие от сланцевых смол, главные м- и n-изомеры; о-ксилол и этилбензол содержатся в небольшом количестве и пропилбензолы присутствуют в следовых количествах. Характерные компоненты сланцевых смол — длинноцепочечные алкилбензолы — отсутствуют.

Из полициклических ароматических углеводородов преобладают метилнафталины. Среди диметилнафталинов доминируют 2,6- и 2,7-изомеры, что редко для каменноугольных и сланцевых смол. Распределение остальных ароматических компонентов такое же, как и в смоле фан-ягнобского угля [8], но отношение диметил- : метилнафталины выше в исследованной нами смоле, что свидетельствует о ее более высокой алкилированности.

В группе нейтральных кислородных соединений много низкокипящих соединений, среди них н-алкилкетонов нет, и они имеют, вероятно, ароматическую структуру. Состав фенолов такой же, как в большин-стве смол полукоксования сапропелитов и гумитов. Несколько завышено содержание 2-изомеров, отсутствуют этилфенолы. В настоящее время есть много доказательств в пользу того, что далекими предшественниками указанных фенолов являются углеводы [9].

Во многих старых работах, посвященных первичной смоле каменного угля, высказывалось мнение, что в этих смолах ароматических углеводородов мало — не более 10%. Еще недавно [10] на основе данных структурно-группового анализа утверждали, что основное количество углеводородов смолы полукоксования каменного угля - это нафтеновые или частично гидрированные производные полициклических ароматических углеводородов. В настоящей работе, исходя из данных газохроматографического анализа, мы утверждаем, что первичная каменноугольная смола имеет ароматическую природу. Такой же вывод был сделан нами и раньше [8].

ЛИТЕРАТУРА

- Гуляева Н. Д., Арефьев А. О., Соколов В. Л., Петров Ал. А. Закономерности распределения нормальных и изопреноидных алканов в углях различной стадии метаморфизма. Химия тв. топлива, 1976, № 1, с. 106—110.
 Гуляева Н. Д., Арефьев А. О., Емец Т. П., Соколов В. Л., Петров Ал. А. Закономерности распределения нормальных и изопреноидных алканов в гумусовых углях. Химия тв. топлива, 1978, № 1, с. 45—51.
 Гуляева Н. Д., Арефьев А. О., Петров Ал. А. Закономерности распре-деления нормальных и изопреноидных алканов в горючих сланцах. Химия тв. топрива 10, С. 25. 21.
- тв. топлива, 1977, № 6, с. 25—31. 4. Румянцева З. А., Гарцман Б. Б., Гришин Н. Н. Об чидивидуальном составе водорастворимых поликарбоновых кислот, полученных при окислении гумусовых углей. — Химия тв. топлива, 1979, № 3, с. 124—129.

82

- Klesment, I. Application of chromatographic methods in biogeochemical investigations. J. Chromatogr., 1974, v. 91, p. 705—713.
 Коняшина Р. А., Кричко А. А., Никифорова Т. С., Пахомов В. П.
- Определение состава водородсодержащего газа методом газовой хроматографии. — Химия тв. топлива, 1970, № 4, с. 135—138. 7. Аронов С. Г., Нестеренко Л. Л. Химия твердых горючих ископаемых. Харь-
- ков, 1960.
- ков. 1900.
 Урмет Э. А., Бурякова Э. П., Румянцева З. А., Клесмент И. Р., Уров К. Э. Хроматографический анализ экстрактов и продуктов пиролиза среднеазнатского каменного угля. Химия тв. топлива, 1977, № 2, с. 78—83.
 Фомина А. С., Наппа Л. А. Об участии полисахаридных компонентов морских
- седиментов в образовании фенолов при их термолизе. В кн.: Материалы совещания «Молекулярная структура углеводородов и гетероатомных соеди-нений нефти и седиментов». М., 1978, с. 63—64. 10. Платонов В. В., Ивлева Л. Н. К вопросу о структуре углеводородов пер-вичной смолы каменного газового угля. — Химия тв. топлива, 1979, № 1,
- c. 96-103.

Институт химии Академии наук Эстонской ССР Поступила в редакцию 24/IX 1979

OR CARBING DACCERTER N.P. OCHORG

I. KLESMENT, K. UROV, Maret KUUSIK, V. VÕSSOTSKAJA

KUZNETSKI BASSEINI VITRINIITSE KIVISÖE BITUMOIDI JA UTTETÕRVA ISELOOMUSTUS

Uuritud kivisüsi sisaldab A- ja C-bitumoidi vastavalt 0,6 ja 3,4%, õlisaagis on 8,5%, alifaatsete struktuuride ja rasvhapete sisaldus on madal. Bitumoid ja lahustumatu sõe alifaatsed struktuurid on geneetiliselt seotud ja põhiliselt bakteriaalset päritolu.

I. KLESMENT, K. UROV, Maret KUUSIK, V. VYSOTSKAYA

CHARACTERIZATION OF KUZNETSK BASIN VITRINITE COAL BITUMEN AND SEMICOKING OIL

The content of bitumens A and C is 0.6 and 3.4%, oil yield 8.5%. The content of aliphatic structures and fatty acids is low; the aliphatic structures of bitumen and insoluble coal have a genetic relationship and they are mostly of bacterial origin.