EESTI NSV TEADUSTE AKADEEMIA TOIMETISED, 27. KÕIDE KEEMIA. 1978, NR. 2

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 27 ХИМИЯ. 1978, № 2

УДК 547.461.4:541.123.3

Э. СЕПП, Г. РАЯЛО

ДАВЛЕНИЕ ПАРОВ ЛЕТУЧИХ КОМПОНЕНТОВ В СИСТЕМЕ ЯНТАРНАЯ КИСЛОТА—АЗОТНАЯ КИСЛОТА—ВОДА

E. SEPP, G. RAJALO. LENDUVATE KOMPONENTIDE AURURÕHUD SÜSTEEMIS MEREVAIK-HAPE-LÄMMASTIKHAPE-VESI

E. SEPP, G. RAIALO. VAPOUR PRESSURES OF LIGHT CONSTITUENTS IN THE SYSTEM SUCCINIC ACID-NITRIC ACID-WATER

Ранее нами исследовалась растворимость янтарной кислоты в системе янтарная кислота—азотная кислота—вода практически для всех концентраций растворов [¹]. Все изотермы растворимости имели ясно выраженный минимум, указывающий на наличие комплексообразования в растворе, что должно сказаться и на равновесии жидкость—пар в данной тройной системе. Действительно, введение янтарной кислоты в бинарный растворитель может привести, с одной стороны, к конкурентной борьбе между кислотами за обладание водой, а с другой, к взаимодействию между кислотами с образованием комплексных соединений. Эти явления и вызывают соответствующие изменения в давлениях паров воды и азотной кислоты.

Динамическим методом [^{2, 3}] в тройной системе при 50, 75 и 100 °С определены равновесные давления паров воды и азотной кислоты в интервале концентраций азотной кислоты от 0 до 90 вес.% (таблица). Влияние янтарной кислоты на фазовое равновесие жидкость—пар в данной системе можно описать видоизмененным уравнением Сеченова [⁴]

$$\lg A_{\alpha} = K x_3,$$

где $A_{\alpha} = \alpha/\alpha_0$ — т. н. коэффициент селективности, который вычисляется при $x_1^0 = x_1'$; $\alpha_0 = y_1(1 - x_1^0/x_1^0(1 - y_1)$ — относительная летучесть азотной кислоты и воды в бинарном растворе азотная кислота—вода; $\alpha = y_1(1 - x_1')/x_1'(1 - y_1)$ — то же в тройном растворе янтарная кислота—азотная кислота—вода; $x_1' = x_1100/x_1 + x_2$ — относительная концентрация азотной кислоты в тройном растворе, мол.%; x_1 и x_1^0 — концентрация азотной кислоты в тройном и в бинарном растворах соответственно, мол.%; y_1 — концентрация азотной кислоты в паровой фазе, мол.%; x_2 и x_3 — концентрации воды и янтарной кислоты соответственно, мол.%; K — константа.

Значение константы K зависит от температуры опыта и концентрации азотной кислоты. Так, в интервале концентраций 0—15 мол. $K = = 0,054 (T = 100^\circ), 0,041 (T = 75^\circ)$ и 0,040 (T = 50°), а при концентрациях выше 30 мол. % - 0,013, -0,010 и -0,006 соответственно при тех же

Состав	пара	и общее	давление	паров	B	системе
янта	рная	кислота-	азотная	кислота	-	вода

1000				A	20210021-	E desider	Sector and the sector of the s				1 and the second
<i>x</i> ' ₁	<i>x</i> ₃	y_1	Р	x' 1	<i>x</i> ₃	<i>y</i> ₁	P	<i>x</i> ' ₁	<i>x</i> ₃	<i>y</i> ₁	P
T=100 °C											
0 0 0 0 3,1 3,1 3,1 3,1 6,7 6,7 6,7	$\begin{array}{c} 0\\ 1,67\\ 3,70\\ 9,25\\ 15,7\\ 0\\ 4,0\\ 10,0\\ 14,4\\ 0\\ 4,3\\ 12,9 \end{array}$	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0,06 \\ 0,10 \\ 0,22 \\ 0,38 \\ 0,28 \\ 0,50 \\ 1,45 \end{array}$	$\begin{array}{c} 760\\ 746\\ 725\\ 676\\ 632 \\ 722\\ 683\\ 631\\ 607\\ 675\\ 635\\ 559 \end{array}$	$\begin{array}{c} 11,0\\11,0\\16,1\\16,1\\22,3\\22,3\\26,4\\26,4\\26,4\\30,5\\\end{array}$	0 2,1 7,8 0 5,2 9,8 0 9,7 0 6,0 10,0 0	$1,03 \\ 1,31 \\ 2,7 \\ 3,1 \\ 3,9 \\ 7,1 \\ 8,2 \\ 10,3 \\ 12,8 \\ 12,3 \\ 11,8 \\ 19,6 \\ 1,03 \\ 1,8 \\ 19,6 \\ 1,03 \\$	$583 \\ 567 \\ 532 \\ 497 \\ 470 \\ 443 \\ 415 \\ 391 \\ 384 \\ 375 \\ 365 \\ 354$	30,5 47,7 47,7 53,4 53,4 53,4 72,0 72,0 72,0	$10,5 \\ 0 \\ 7,8 \\ 14,0 \\ 0 \\ 8,2 \\ 14,9 \\ 0 \\ 9,0 \\ 21,4$	$\begin{array}{c} 15,3\\65,4\\59,5\\55,6\\73,3\\70,5\\66,6\\95,0\\93,6\\90,6\end{array}$	330 413 340 322 436 360 318 710 624 480
	T=75 °C										
0 0 0 0 6,7 6,7 6,7	0 1,67 3,89 6,14 8,60 0 3,1 6,0	0 0 0 0,115 0,20 0,27	289 279 272 267 263 249 237 228	16,1 16,1 16,1 26,4 26,4 26,4 47,7	$0\\2,4\\4,5\\0\\2,9\\4,6\\0$	2,1 2,6 3,1 10,5 10,7 11,2 64,1	184 176 170 135 127 123 140	47,7 53,4 53,4 53,4 72,0 72,0 72,0	7,103,88,204,917,2	59,5 77,5 76,0 74,5 97,6 97,0 95,6	122 169 148 126 297 268 219
					T = 5	0°C					
0 0 0 6,7 6,7	0 1,67 2,62 3,8 0 0,9	0 0 0 0,09 0,09	92,0 89,0 87,9 87,3 80,4 78,4	$ \begin{array}{c} 6,7\\ 16,1\\ 16,1\\ 16,1\\ 26,4\\ 26,4\\ 26,4 \end{array} $	2,5 0 0,8 1,7 0 1,5	0,1 1,4 1,5 8,6 8,7	77,2 56,8 56,0 55,3 39,7 38,0	53,4 53,4 72,0 72,0 72,0	0 4,0 0 4,9 7,8	77,5 76,6 98,1 97,8 97,6	53,0 46,6 107,0 93,0 87,0

температурах. На основе полученных значений *К* можно заключить, что в первом случае азотная кислота высаливается, а во втором, наоборот, всаливается.

Так как результаты опытов в основном выражены уравнением Сеченова, то проверку экспериментальных данных целесообразно провести по методу Херингтона и Редлиха-Кистера [⁵].

А. Горбунов [6] предложил новый метод термодинамической проверки опытных данных для бинарных систем при изотермических условиях. Мы пытались расширить этот метод на тройные системы с одним нелетучим компонентом с выводом уравнения

$$Py_1y_2 = \int_{y_1}^{y_2} P[1 - (x_1' + y_1)(1 - x_3)]dy_1.$$

Если учесть, что при $y_1 = 0$ и $y_2 = 0$ интеграл равняется нулю, то для проверки результатов удобно использовать уравнение

 $\int_{0}^{1} P[1-(x_{2}'+y_{1})(1-x_{3})]dy_{1}=0.$

В отличие от уравнения Херингтона и Редлиха-Кистера в выведенном

уравнении учитывается и общее давление Р. что позволяет более точно проверить опытные данные. Значения интегралов при проверке методом Херингтона и Редлиха-Кистера для рассматриваемых температур находились в пределах ±0,015, что подтверждает правильность опытных данных.

Проверка по выведенному уравнению показала, что отклонение интегралов от нуля при всех изученных температурах находилось в пределах ±0,2-0,3 мм рт. ст. Эти значения интегралов можно считать **УДОВЛЕТВОРИТЕЛЬНЫМИ**.

Ход изоактиват при 100 °С. А и Б концентрации янтарной и азотной кислот соответственно, мол. %.

На основе полученных данных были вычислены изоактиваты воды, ход которых при 100° показан на рисунке, откуда видно, что при низких концентрациях азотной кислоты они практически прямые, а при средних и высоких концентрациях несколько искривляются. Если при концентрациях до 30 мол. % ход изоактиват воды соответствует перераспределению воды в полном соответствии с правилом А. Здановского [7], то при более высоких концентрациях наблюдается высаливание воды, очевидно, вследствие взаимодействия между азотной и янтарной кислотами с образованием различных комплексных ионов с водородной связью.

ЛИТЕРАТУРА

- 1. Сепп Э., Раяло Г., Изв. АН ЭССР. Хим. Геол., 26 (1977).
- 2. Сусарев М. П., Сторонкин А. В., Вестник ЛГУ, сер. хим., 6, 119 (1952).
- 3. Якимов М., Мишин В., Раднохимия, 6, 543 (1964).
- 4. Ципарис И. Н., Равновесие жидкость-пар. Тройные системы с одним нелетучим компонентом. Л., 1973, с. 15.
- Коган В. Б., Гетерогенные равновесия. Л., 1969, с. 318. 5
- 6. Горбунов А. Н., ЖПХ, 50, 23—26 (1977). 7. Здановский А. Б., Тр. соляной лаборатории АН СССР, вып. 4, 1 (1936).

Институт химии Академии наук Эстонской ССР

Поступила в редакцию 4/VIII 1977