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Abstract. Interaction of powdered titanium with the polyphosphoric acid melt containing cations of

alkali metals was studied at 350 °C. For the first time double condensed phosphates of titanium and

alkali metals with a composition Na;Ti"'P4o,; and Cs,Ti''P,o,; were obtained and studied by
XRD. Ultraphosphates Na;Ti"'PgO,; with framework structure contain cage-type anions.

TetraphosphateCs,Ti'P,05 is of a layer structure.
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INTRODUCTION

The chemistry of condensed phosphates as a branch of modern science

evolved in the second half of the 20th century [l]. Estonian chemists

G. Tammann and J. Kurrol stood at its very source [2]. Our contemporary
Academician M. Veiderma and his school in Tallinn Technical University have

successfully taken part in its formation and development [3-7].
Syntheses of new compounds with oligomeric and polymeric anions are

among the important tasks of the chemistry of condensed phosphates. Many
compounds of this group of phosphates have been obtained in the course of

systematic studies on the interaction of metal oxides with polyphosphoric acid

(PPA) melts initiated by Academician I. Tananaev in the Institute of General and

Inorganic Chemistry of the Russian Academy of Sciences. As a result it was

shown that in the same conditions various metal cations form in the melt of PPA

phosphates with different types of anions [B]. As a rule the most complicated
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anions form when several metal cations with different charge, size, and structure

of the electron shell are used in combination. In particular by this way condensed

phosphates of alkali and trivalent metals (Al, Ga, V, Cr, Mn, Fe) with unknown

or unusual forms of anions such as cyclooctaphosphates M,'M,""P;O,
(M'=K, Rb), cyclododecaphosphates M;M;"P;,OSs (M'=Cs, Rb), ultra-

phosphates Na;M"'PgO,;, and others were obtained [9—ll].
The study on the conditions of formation, composition, and structure of

condensed phosphates of Group IV elements was the next stage of research. The

study reported here was aimed at the synthesis of double phosphates of titanium

and alkali metals and the determination of their crystal structure. So far only
polyphosphate Ti' (PO;); [l2] and some diphosphates Ti' P,O; [l3], M'Ti"'P,o;
[l4, 15], where M' is an alkali metal, and BaTi,"'(P,o,), [l6] have been

described in the literature.

EXPERIMENTAL

In the present research interaction of metallic titanium with phosphoric acid

containing cations of alkali metals (Na, K, Rb, Cs) at 350°C was studied.

Carbonates and nitrates of alkali metals, phosphoric acid (85%), and powdered
metallic titanium were used as initial materials. The use of TiO, is not

appropriate due to its inactivity with respect to the PPA melt. A mixture of the

mentioned components with an atomic ratio M':P:Ti=7.s:ls:l was put into a

glass carbon crucible and then heated in a muffle furnace at 350°C during 7 days.
When the powdered titanium had dissolved the melt acquired a pale blue colour,
which stayed for some days. Later the melt became colourless. The reduced

crystals were washed with cold water from the excess of phosphoric acid and

then dried in the air.*The obtained compounds were studied by phase and X-ray
analyses.

In the PPA melts containing sodium and titanium cations two compounds
formed: Ti"VP,O; in the form of a white powder and Na;Ti""PgO,;, a double

ultraphosphate, as pale blue crystals. In the presence of potassium and rubidium

only Ti""P,O; crystallized. From the melt containing caesium cations the

colourless Cs,Ti'"P,O3 precipitated immediately.
The composition and structure of Na;Ti"Pgo,; and Cs,Ti"VP,O,; were

established by X-ray analysis. Experimental conditions of taking diffractograms,
main crystallographic parameters, and the results of the determination of the

structure are presented in Table 1, coordinates of atoms and thermal parameters
in Table 2. The coordinates of the atoms in the structure of Na;Ti"PsO,; were

specified by the least squares method (LSM) with the use of anisotropic
approximation by the program SHELX76 [l7]. The positions of the atoms in the

structure of Cs,Ti'YP,O,; were found from the Patterson function and specified
by LSM with the use of anisotropic approximation by the program SHELXII.93

[lB].
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* yMoK,,; graphite monochromator; y-correction of reflections.
** N, = number of observed reflections;

N, = number of independent reflections with I>20c(I);
Np = number of adjusted parameters. "

Parameter Na3TimPgOB CSzTi1VP4O13

Cubic Triclinic

a, A 11.968(4) 5.1162(8)
b, A 7.9407(8)
c, A 15.714(2)

,
° 84.16(1)

B, ° 83.92(2)

Y,° 80.64(1)

Space group P4,32 PI
Z 4 2

v, ÄÄ 1714.2(9) 624.0(1)
Peale /em 2.839 3.432

u mm”' 1.46 7.00

2005 70 56

Crystal size, mm 0.2 x 0.2 x 0.2 0.1 x0.2 x 0.2

Diffractometer* Syntex P2; Enraf-Nonius CAD-4

Scanning (0/26 /20

N ** 1007 2309

N,** 640 2058

Np** 55 181

wR2, RI 0.128, 0.045

R, wR 0.033, 0.036

Gof 1.27 1.05

W 1/6°(F) 1/6°(F?)

Table 1. Main crystallographic parameters, experimental conditions, and parameters of the

structure adjustment

Na;Ti"'P40,,
Ti(1) 3/8 3/8 3/8 0.62(1)
Na(1) 12 0.0430(2) 0.2930(2) 1.49(4)
P(1) 0.1429(1) 0.1455(1) 0.5684(1) 0.68(2)
P(2) 0.0186(1) 0.0186(1) 0.0186(1) 0.64(1)
O(1) 0.0418(3) 0.1197(3) 0.6365(3) 1.13(6)
0(2) 0.4247(3) 0.0064(3) 0.4038(3) 1.14(6)

0(3) /2 0.2666(3) 0.5166(3) 1.11(7)

O(4) 0.3131(3) 0.0660(3) 0.2371(3) 1.08(6)

O(5) 0.0892(2) 0.0892(2) 0.0892(2) 1.04(5)

Table 2. Coordinates of atoms and thermal parameters in the structures
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X-ray analysis showed that Na;Ti"PgO,; is an ultraphosphate with a cage

structure of the anion. The whole compound has a framework structure. The

insulate anion PgO,;% can be represented as a ring of six PO, tetrahedrons with a

bridge of two PO, tetrahedrons (Fig. 1). It is bound with TiOg¢ octahedrons by
common oxygen corners. Sodium atoms occupy holes in the octahedron.

Fig. 1. Structure of the cage-type anion PgO,;

CSzTiIVP4O 13

Cs(1) 0.3257(1) 0.2562(1) 0.01154(3) 1.81(2)
Cs(2) 0.7334(1) 0.7014(1) 0.47003(3) 1.91(2)

Ti(1) 0.554702) 0.9422(2) 0.7395(1) 0.74(2)
P(1) 0.1239(3) 0.7796(2) 0.6479(1) 0.82(3)

P(2) 0.3318(3) 0.5933(2) 0.8045(1) 0.85(3)

P(3) 0.6855(3) 0.3272(2) 0.7126(1) 0.82(3)
P(4) 0.9789(3) 0.0989(2) 0.8369(1) 0.86(3)
O(1) 0.2910(9) 0.9144(6) 0.6661(3) 1.05(8)
0(2) 0.213(1) 0.6986(7) 0.5677(3) 1.65(9)
O(3) 0.149(1) 0.6364(6) 0.7284(3) 1.39(8)

O(4) --0.1693(9) 0.8583(6) 0.6544(3) 1.20(8)

O(5) 0.486(1) 0.4070(6) 0.7885(3) 1.14(8)

O(6) 0.185(1) 0.5818(7) 0.8898(3) 1.9(1)
O(7) 0.538(1) 0.7144(6) 0.7922(3) 1.12(8)

O(8) 0.566(1) 0.1749(6) 0.6908(3) 1.08(8)
O(9) 0.943(1) 0.2536(6) 0.7598(3) 1.26(8)

O(10) 0.743(1) 0.4508(6) 0.6405(3) 1.47(9)

O(11) 0.881(1) 0.1644(8) 0.9208(4) 1.9(1)
0(12) 1.2758(9) 0.0319(6) 0.8267(3) 1.01(8)

O(13) 0.8199(9) —-0.0359(6) 0.8125(3) 1.12(8)

Table 2 continued
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Cs,TiYP4013 is a double tetraphosphate with a layer structure. The layers are

perpendicular to the direction coincident with the parameter ¢ and consist of

P,O¢3 anions and TiOg octahedrons. Distances between the neighbouring layers
make up 1/2C = 7.886 A. The anions consist of four PO, tetrahedrons linked by
common oxygen corners forming thus short chains. In the anions three different

P-O bond distances were fixed. The longest, 1.576-1.639 Ä, belongs to the

bridge oxygen atoms and the medium, 1.515—1.547Ä, to the end oxygen atoms

coordinated by titanium atoms. The shortest P-O distance, 1.460-1.473 Ä,
belongs to the end oxygen atoms incoming to the coordination sphere of caesium

atoms. The distances Ti—O in the octahedron are equal toone another. The

caesium atoms are disposed between the layers [TiP,O;3] and surrounded by six

nearest oxygen atoms at a distance of 3.027-3.384A (Fig. 2). It should be

mentioned that the coordination number 6 is rarely met in oxygen compounds of

caesium. Apparently in this case the number is conditioned by the requirements
of the structural frame.

DISCUSSION

The experiments showed that by the interaction ofpowdered titanium with the

PPA melt its oxidation occurs, first into cations Ti"" (formation of a pale blue

melt) and afterwards into Ti'', which precipitate as corresponding phosphates.
The composition and structure of the obtained compounds are defined by the

nature of the alkali metal cation and titanium oxidation number. With the sodium

cation ultraphosphate of trivalent titanium Na;Ti"P3O,; (with a low admixture of

Ti'""P,o,) and with the caesium cation tetraphosphate of quadrivalent titanium

Cs,Ti""P,O,S forms. The former compound is analogical to ultraphosphates of

trivalent metals Na;M"PzO,; synthesized by us earlier [lo], and the latter to

Fig. 2. Projection of the Cs,Ti"VP,O; structure along [loo].
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(NH4)»SiP4OI3S [l9]. Titanium does not form double phosphates with potassium
and rubidium and it precipitates in the form of Ti''P,o;, although with other

trivalent metals we have obtained in the same conditions double cycloocta-
M,'M,""P;O,; and cyclododecaphosphates M;'M;"PI,OS6 [9]. Probably the

absence of such compounds with titanium can be explained by the kinetics of the

processes in the melt. Our earlier studies showed that the above-mentioned

double cycloocta- and cyclododecaphosphates crystallize from the PPA melts

extremely slowly (during several weeks) in contrast to ultraphosphates
NasM"™P;o,;, which crystallize within 2-3 days [2o]. Therefore, in the presence

of sodium cations Ti"" formed in the melt has time to evolve to the solid phase in

the form of a double ultraphosphate while in the presence of potassium,
rubidium, and caesium cations the oxidation ofTi" to Ti"' proceeds more rapidly
than the evolution of cyclophosphates of trivalent titanium and leads to the

precipitation of phosphates of quadrivalent titanium Ti''P,o; and Cs,Ti" P4O;s.
All the obtained phosphates are compounds that are stable in the air, do not

dissolve in water, and dissolve with difficulty in acids. The obtained

cyclotetraphosphate Cs,TiVP,O3; of a layer structure is of interest as a potential
ion exchanger with a noteworthy interlayer distance of about 7.9 A.
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TITAANI JA LEELISMETALLIDE KAKSIKFOSFAATIDE

SÜNTEES JA STRUKTUUR

Natalia TSUDINOVA Jelena MURASOVAja

On esitatud uurimuste tulemused, mis puudutavad pulbrilise titaani ja
leelismetallide katioone sisaldava poliifosforhappe sulami vahelisi reaktsioone

350°C juures. Esmakordselt on siinteesitud titaani ja leelismetallide konden-

seeritud kaksikfosfaadid valemiga Na;Ti"Pgo,s ja Cs,Ti""P,o;s. Rontgen-

difraktsioonanaliiiisi abil on kindlaks tehtud, et Na;Ti"'PsO,; on sorestikuline

ultrafosfaat, mis sisaldab iimbrisstruktuuriga anioone, jaCszTin4ol3 on kihilise

struktuuriga tetrafosfaat.
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