REACTION CHEMISTRY OF HYDROXYAPATITE:
FORMATION AND DECOMPOSITION

Takafumi KANAZAWA\textsuperscript{a}, Hideki MONMA\textsuperscript{b}, and Yusuke MORIYOSHI\textsuperscript{c}

\textsuperscript{a} Research Institute, Chiba Institute of Technology, 2-17-1, Tsudanuma, Narashino, Chiba, 275-0016 Japan
\textsuperscript{b} Faculty of Engineering, Kogakuin University, 2665-1, Nakano-cho, Hachioji-shi, Tokyo, 192 Japan; monma@kogakuin.ac.jp
\textsuperscript{c} College of Engineering, Hosei University, 3-7-2, Kajino-cho, Koganeishi, Tokyo, 184 Japan

Received 27 September 1999

Abstract. The solid state formation of stoichiometric hydroxyapatite (HAp) was investigated in detail by heating the Ca\textsubscript{3}(PO\textsubscript{4})\textsubscript{2}-CaO mixture and Ca\textsubscript{3}(PO\textsubscript{4})\textsubscript{2}O in the presence of water vapour. HAp was an exceptionally thermally stable hydroxide even at high temperatures above 1000 °C and at low water vapour pressures. New cementing materials consisting of $\alpha$-Ca\textsubscript{3}(PO\textsubscript{4})\textsubscript{2}, $\alpha$-Ca\textsubscript{3}(PO\textsubscript{4})\textsubscript{2} + CaHPO\textsubscript{4}·2H\textsubscript{2}O, and CaHPO\textsubscript{4}·2H\textsubscript{2}O + CaCO\textsubscript{3} were found and clarified with respect to the hardening accompanying the formation of calcium-deficient hydroxyapatite (DAp), hydration reactions with and without additives, and mechanical strength of hardened products. The conversion of sparingly water-soluble CaHPO\textsubscript{4}·2H\textsubscript{2}O and CaSO\textsubscript{4}·2H\textsubscript{2}O and a calcium silicate mixture into DAp was successfully conducted. Thermal decomposition characteristics of DAp, HAp, HAp + SiO\textsubscript{2}, and HAp + Ca\textsubscript{2}P\textsubscript{2}O\textsubscript{7} were elucidated in detail.

Key words: hydroxyapatite, solid state formation, thermal decomposition, apatitic cement.

INTRODUCTION

Preparation and decomposition reactions of hydroxyapatite, as well as those of fluorapatite, are important. These reactions have become of increasing interest in connection with various developments of functional materials of calcium phosphate. Details of hydroxyapatite chemistry have been often reviewed by various researchers including Kanazawa [1]. The composition of hydroxyapatite is given stoichiometrically as Ca\textsubscript{10}(PO\textsubscript{4})\textsubscript{2}(OH)\textsubscript{2} (referred to as HAp) and calcium-deficient as Ca\textsubscript{10-\textit{x}}(HPO\textsubscript{4})\textsubscript{\textit{x}}(PO\textsubscript{4})\textsubscript{6-\textit{x}}(OH)\textsubscript{2-\textit{x}}·nH\textsubscript{2}O; 0 < \textit{x} ≤ 1 (DAp). HAp-based
ceramics are applied to bioactive materials with good biocompatibility, and powdery and porously hardened DAp materials to bioactive materials, adsorbents for biological macromolecules, ion-exchangers for heavy metal ions, and catalysts for the decomposition of alcohols and chlorine-containing organic compounds. The present paper presents the formation and decomposition reactions involving HAp and DAp investigated so far by the authors.

**SOLID STATE FORMATION**

**Ca$_3$(PO$_4$)$_2$–CaO–H$_2$O vapour:** The high temperature formation of HAp in water vapour has been already reported by many researchers. The formation reaction using Ca$_3$(PO$_4$)$_2$ is expressed as follows:

$$3\text{Ca}_3\text{(PO}_4\text{)}_2 + \text{CaO} + \text{H}_2\text{O} \rightarrow \text{HAp}.$$  

The equilibrium of this reaction is governed thermodynamically only by water vapour pressure ($p_{H_2O}$). For example, the equilibrium $p_{H_2O}$ at 1000°C is $10^{-2}$ mmHg [2]. HAp is an exceptionally thermally stable hydroxide. The authors investigated the reaction in detail also under various conditions of mixing ratio of the reactants, $p_{H_2O}$, heating temperature, and time as shown in Figs. 1 and 2 [3]. HAp was formed even in an atmosphere ($p_{H_2O} = 2.4$ mmHg) dried with silica gel. The conversion increased with increasing $p_{H_2O}$, temperature, and time. Increasing mixing ratio of Ca$_3$(PO$_4$)$_2$/CaO was also effective as the reaction contact area increased. Excess CaO after runs could be removed with NH$_4$Cl aqueous solution. The obtained curves obeyed the Shinriki–Kubo equation derived for solid state reactions in a similar manner as the Jander equation. According to Arrhenius plots of rate constants obtained at different temperatures, an apparent activation energy for the HAp formation was 25 kcal/mol.

![Fig. 1. Effect of temperature on the conversion ($\alpha$) of Ca$_3$(PO$_4$)$_2$ into HAp. 3Ca$_3$(PO$_4$)$_2$/5CaO mixture, $p_{H_2O}$ 23 mmHg.](image1)

![Fig. 2. Effect of $p_{H_2O}$ on the conversion ($\alpha$) of Ca$_3$(PO$_4$)$_2$ into HAp. 3Ca$_3$(PO$_4$)$_2$/5CaO mixture, temperature 1200°C.](image2)
**Ca₄(PO₄)₂O–H₂O vapour**: Tetracalcium phosphate (Ca₄(PO₄)₂O) is known as a mineral called hilgenstockite contained in sludge in the steel industry. The formation of HAp during heating Ca₄(PO₄)₂O in air was established and clarified as follows by repeated TG, XRD, and IR [4]:

where (H·O)Ap is hydroxyxyapatite formed by partial dehydration of HAp. Ca₄(PO₄)₂O adsorbed easily H₂O at temperatures below 1050°C and changed to a mixture of HAp and CaO. Figure 3 shows the thermal stability or instability of Ca₄(PO₄)₂O.

**HYDROLYSIS FORMATION ACCOMPANYING HYDRAULICITY**

**α-Ca₃(PO₄)₂**: Although Ca₃(PO₄)₂ seemed to be chemically stable in water, the high temperature form α prepared by quenching was found to have a comparatively high hydration activity accompanying hydraulicity [5]. The hydration reaction of α-Ca₃(PO₄)₂ was given as follows [6]:

Below pH 5.5: \[ \text{Ca}_3(\text{PO}_4)_2 + \text{H}_2\text{O} \rightarrow 2\text{CaHPO}_4 \cdot 2\text{H}_2\text{O} + \text{Ca(OH)}_2; \]

pH 5.5–7.5: \[ 3\text{Ca}_3(\text{PO}_4)_2 + 7\text{H}_2\text{O} \rightarrow \text{Ca}_8\text{H}_2(\text{PO}_4)_6 \cdot 5\text{H}_2\text{O} + \text{Ca(OH)}_2; \]

Above pH 7.5: \[(1 - X)\text{Ca}_3(\text{PO}_4)_2 + 3(2 + n - 2)\text{H}_2\text{O} \rightarrow 3\text{Ca}_{10-X}(\text{HPO}_4)_x(\text{PO}_4)_{6-x}(\text{OH})_{2-x}\text{nH}_2\text{O} + 2(1 - X)\text{H}_3\text{PO}_4. \]

The reactions forming octacalcium phosphate (Ca₈H₂(PO₄)₆·5H₂O) and DAp accompanied hydraulicity. Figure 4 presents photographs of hardened DAp. Hardened DAp bodies prepared at 80°C had 55–80% porosity and 3–30 MPa compressive strength [7]. The hydration was influenced by various water-soluble
additives such as NH₄Cl, NaCl, NaH₂PO₄, CH₃COONH₄, etc. The hydration conversion of α-Ca₃(PO₄)₂ into DAp under initial conditions of pH 6.0 and 3 h treatment at 40°C was adjusted to 0–90% by additives and setting times of 4–30 min [8].

Fig. 4. Photographs of hardened DAp. Left: hardened DAp (left 3 pieces) at 80°C and sintered DAp (right 2 pieces) at 1100°C. Right: microstructure of hardened DAp.

α-Ca₃(PO₄)₂–CaHPO₄·2H₂O: Since the finding of the hydraulicity of α-Ca₃(PO₄)₂ [5], the system CaO–P₂O₅ has become of interest especially in the field of biomaterials as a new cementing composition system. Brown and Chow [9] presented independently the Ca₄(PO₄)₂O–CaHPO₄·2H₂O combination, and the present authors have also proposed the α-Ca₃(PO₄)₂–CaHPO₄·2H₂O combination [10]. The overall hydration reactions of these were expressed as follows:

\[
2\text{Ca}_4(\text{PO}_4)_2\text{O} + 2\text{CaHPO}_4\cdot2\text{H}_2\text{O} \rightarrow \text{Ca}_8\text{H}_2(\text{PO}_4)_6\cdot5\text{H}_2\text{O} + 4\text{H}_2\text{O},
\]

\[
2\text{Ca}_3(\text{PO}_4)_2 + 2\text{CaHPO}_4\cdot2\text{H}_2\text{O} + \text{H}_2\text{O} \rightarrow \text{Ca}_8\text{H}_2(\text{PO}_4)_6\cdot5\text{H}_2\text{O}.
\]

Setting times in the latter system were adjusted to 9 min–2 h by changing the mixing ratio of the reactants. Mechanical strengths of the resulting hardened bodies increased up to 20 MPa (wet) and ca. 40 MPa (dry) in compressive strength in a 0.9% NaCl physiological solution.

CaHPO₄·2H₂O–CaCO₃: The conversion of CaHPO₄·2H₂O into octacalcium phosphate or DAp or HAp in solution is made by continuously controlling an alkaline medium. The resulting products are obtained as powder because the reaction system has to be stirred for the reaction to proceed. However, CaHPO₄·2H₂O mixed with CaCO₃ transformed to octacalcium phosphate or DAp without stirring [11]. As a result, hardened products were obtained. CaCO₃ seemed to act as a “solid pH-buffer”. Figure 5 shows the conversion fraction of CaHPO₄·2H₂O in the system with and without F⁻. The addition of F⁻ was very effective for the acceleration of the conversion, but not for the hardening. Reaction products were octacalcium phosphate at 50°C and carbonated DAp at 80°C [12]. The resulting hardened bodies have 70–80% porosity and 0.3–1.5 MPa diametral tensile strength.
CONVERSION OF CALCIUM PHOSPHATE, SULPHATE, AND SILICATE INTO HYDROXYAPATITE

**Calcium phosphate:** The hydrolysis conversion of brushite (CaHPO₄·2H₂O) into DAp and HAp was investigated on the basis of the following two-step idea [13]:

\[
\text{CaHPO}_4\cdot2\text{H}_2\text{O} \rightarrow \text{DAp} \rightarrow \text{HAp},
\]

where the first step (I) is the structural change of brushite into apatite with a Ca/P ratio of 1.50 and the second (II) subsequent compositional increases up to Ca/P = 1.67 keeping the apatite structure. The maximum reaction rate of Reaction I occurred around pH 8. Hydrolysis time for the complete conversion at pH 8 was within 2.5 h at 40°C, 1 h at 60°C, and only 5 min at 80°C. The Ca/P ratios of DAp thus formed were about 1.50 (40°C, 3 h) and 1.60 (80°C, 5 h). The value 1.60 seemed to be a limit as shown in Fig. 6. The addition of Ca²⁺ in an attempt to increase the Ca/P ratio was highly inhibitory to the hydrolysis of CaHPO₄·2H₂O as shown in Fig. 7. In order to increase the Ca/P ratio, DAp was once separated from the mother liquor of Reaction I, and treated in alkaline conditions.
solutions with Ca$^{2+}$ added, i.e., Reaction II. In Reaction II, increasing pH and/or adding Ca$^{2+}$ were effective for increasing the Ca/P ratio up to 1.67 of HAp. This two-step process was convenient for the preparation of DAp and HAp.

**Calcium sulphate:** Gypsum hemihydrate (CaSO$_4$·0.5H$_2$O) has good hydraulicity. If the resulting hardened gypsum (CaSO$_4$·2H$_2$O) bodies could be converted into crack-free hardened DAp bodies, a new preparation process for hardened DAp would be proposed. The conversion reaction could apparently be given by an exchange reaction of anions, i.e.:

$$\text{CaSO}_4\cdot2\text{H}_2\text{O} + \text{HPO}_4^{2-} \rightarrow \text{Ca}_{10-x}(\text{HPO}_4)_x(\text{PO}_4)_{6-x}(\text{OH})_{2-x}\cdot\text{nH}_2\text{O} (\text{DAp}) + \text{SO}_4^{2-}.$$

Since the difference in density between CaSO$_4$·2H$_2$O (2.3 g/cm$^3$) and DAp (~3.2 g/cm$^3$) might cause an occurrence of cracks during the conversion, the preparation of crack-free DAp bodies was not easy. Runs were carried out by dipping hardened gypsum bodies (porosity 24%, compressive strength 43 MPa) in (NH$_4$)$_2$HPO$_4$ solutions of 0.1–1.0 mol/dm$^3$ at temperatures of 80–160°C [14]. Crack-free DAp hardened bodies with porosities of ca. 60% were obtained by dipping in the solution of 1.0 mol/dm$^3$ at 100–140°C for 5 days. However, remarkable increases in porosity, in other words, decreases in strength, were observed. Increasing pH and the concentration of the solution were effective for the crack-free conversion. Figure 8 shows the appearance of DAp bodies with and without cracks and the microstructure of CaSO$_4$·2H$_2$O and DAp hardened bodies.

**Calcium silicate:** Calcium silicates in Portland cement are typical cementing materials. Hardened calcium silicate bodies (mortar bodies) have an interesting skeleton microstructure. If such a structure was replicated into that of hardened DAp, it must be a new process for porously hardened DAp. The mortar consisting of alite, belite, gypsum, and sand (silica) was hydrated and hardened, then the resulting hardened mortar was dipped in phosphoric acid solutions of 0.01–1.0 mol/dm$^3$ at pH values of 7.5–11 at 40–100°C for 10 min to 4 h [15]. Figure 9 shows the mortar surfaces before and after dipping in 0.1 mol/dm$^3$ (NH$_4$)$_2$HPO$_4$. The particles covering the mortar surface were identified to be DAp with scaly, porous, and submicron square particles of about 100 nm thickness. The coverage became clearer under the conditions of pH 10 and 100°C for 4 h in 1.0 mol/dm$^3$ H$_3$PO$_4$. 
THERMAL DECOMPOSITION

**DAp:** Figure 10 shows the TG and DTA curves of DAp. The thermal changes of DAp were summarized as follows [16]:

I: Evolution of adsorbed H$_2$O

II: Liberation of lattice H$_2$O

- Appearance of an ESR signal above 180°C

III: Condensation of HPO$_4^{2-}$ (2HPO$_4^{2-}$ → P$_2$O$_7^{4+}$ + H$_2$O$\uparrow$)

- Formation of apatite with a composition Ca$_{10-X}$(P$_2$O$_7$)$_X$(PO$_4$)$_{6-2X}$(OH)$_2$

- Increases of the ESR signal up to 520°C and disappearance at 600°C

IV: Unidentified

V: P$_2$O$_7^{4+}$ + 2OH$^-$ → 2PO$_4^{3-}$ + H$_2$O$\uparrow$

- Formation of (1 - X)HAp + 3XCa$_3$(PO$_4$)$_2$

In addition, the reaction PO$_4^{3-}$ + lattice H$_2$O → OH$^-$ + 1/2P$_2$O$_7^{4+}$ + 1/2H$_2$O$\uparrow$ occurred in the range of 250 to 600°C. The ESR signal probably arose from trapped electrons in a locally distorted apatite structure induced by the condensation of HPO$_4^{2-}$. Partial fluoridation of DAp inhibited completely the weight decrease above 500°C [17]. The composition of the resulting apatite was Ca$_{10-X}$(P$_2$O$_7$)$_X$(PO$_4$)$_{6-2X}$F$_2$-X(OH)$_X$, which was stable even at 1340°C.

---

**Fig. 9.** SEM photographs of DAp (right) on the surface of a hardened mortar (left). (60°C for 4 h in 0.1 mol/dm$^3$(NH$_4$)$_2$HPO$_4$ solution).

**Fig. 10.** TG (—) and DTA (- - -) curves of DAp.
**HAp with and without SiO₂:** HAp is an exceptionally thermally stable hydroxide as mentioned above. Figure 11 shows the thermal decomposition of HAp and a mixture of HAp + SiO₂ in N₂. The self-decomposition of HAp was given as
\[
\text{HAp} \rightarrow \text{Ca}_{10}(\text{PO}_4)_6(\text{OH})_{2(1-x)}\square_x + \text{XH}_2\text{O}^\uparrow \\
\rightarrow 2\text{Ca}_3(\text{PO}_4)_2 + \text{Ca}_4(\text{PO}_4)_2\text{O} + 2(1 - X)\text{H}_2\text{O}^\uparrow
\]
(800–900°C)
\[
\rightarrow \text{(800–900°C)}
\]
where \( \square \) is vacancy [18]. The reaction with SiO₂ could be given as
\[
\text{HAp} + \text{SiO}_2 \rightarrow \text{Ca}_3(\text{PO}_4)_2, \text{CaO–SiO}_2 \text{ compounds, } \text{H}_2\text{O}^\uparrow
\]
(900°C)
\[
\rightarrow \text{Ca}_3(\text{PO}_4)_2\text{O}, \text{ Ca}_3(\text{PO}_4)_2\cdot\text{Ca}_2\text{SiO}_4, \text{ Other } \text{CaO–P}_2\text{O}_5–\text{SiO}_2
\]
compounds (~1250°C).

The HAp–SiO₂ reaction increased with increasing the amount of SiO₂ addition; however, it decreased remarkably with introducing water vapour [19]. The thermal stability of the apatite structure was increased significantly by partial substitutions of F⁻ for OH⁻ as shown in Fig. 12.

![Fig. 11. Decomposition (α) of HAp with and without SiO₂ after thermal treatment for 3 h in N₂.](image1)

![Fig. 12. Decomposition (α) of fluoridated HxAp (Ca₁₀(PO₄)₆(OH)₂₋ₓFₓ) with and without SiO₂ after thermal treatment for 3 h in N₂.](image2)

**HAp–Ca₂P₂O₇:** Figure 13 shows the TG and DTA curves for DAp and a mixture of HAp and Ca₂P₂O₇ [20]. The weight loss of DAp at 700–900°C was due to the ionic reaction, OH⁻ + P₂O₇⁺ → 2PO₄³⁻ + H₂O^\uparrow as well as in the case of DAp described above, which accompanied the decomposition of the apatite structure into the β-Ca₃(PO₄)₂ structure. From the similarity of TG curves between DAp and the HAp + Ca₂P₂O₇ mixture, the following reaction can be written:
\[
\text{Ca}_{10}(\text{PO}_4)_6(\text{OH})_2 + \text{Ca}_2\text{P}_2\text{O}_7 \rightarrow \text{Ca}_{12}(\text{PO}_4)_6[2\text{OH}^- + \text{P}_2\text{O}_7^{4-}] \\
\rightarrow \text{Ca}_{12}(\text{PO}_4)_6[2\text{PO}_4^{3-}] + \text{H}_2\text{O}^\uparrow (\text{i.e., } 4\text{Ca}_3(\text{PO}_4)_2 + \text{H}_2\text{O}^\uparrow).
\]

According to the Kissinger plots for DTA peaks around 700–900°C, apparent activation energies for the decompositions were 90 kcal/mol for DAp and 50 kcal/mol for the HAp–Ca₂P₂O₇ mixture.
SUMMARY

Stoichiometric and calcium-deficient hydroxyapatites (HAp and DAp, respectively) have been reviewed with respect to the solid state formation, hydrolysis formation accompanying hydraulicity, conversion of sparingly watersoluble calcium compounds, and thermal decomposition characteristics. HAp was confirmed to be an exceptionally thermally stable hydroxide. The solid state formations of HAp were investigated in detail by heating the Ca₃(PO₄)₂-CaO mixture and Ca₄(PO₄)₂O in the presence of water vapour. New cementing compositions of α-Ca₃(PO₄)₂, α-Ca₃(PO₄)₂ + CaHPO₄·2H₂O, and CaHPO₄·2H₂O + CaCO₃ were proposed and the hydration reactions and mechanical strengths of hardened products were clarified. The conversions of sparingly water-soluble CaHPO₄·2H₂O and CaSO₄·2H₂O and a calcium silicate mixture into DAp were successfully conducted. Thermal decomposition characteristics of DAp, HAp, HAp + SiO₂, and HAp + Ca₂P₂O₇ were elucidated.

REFERENCES


**HÜDROKSÜAPATIIDI REAKTSIOONIKEEMIA: TEKE JA LAGUNEMINE**

Takafumi KANAZAWA, Hideki MONMA ja Yusuke MORIYOSHI

On kirjeldatud suure termilise püsivusega hüdroksüapatiidi (HAp) saamist tahkes faasis Ca₅(PO₄)₂ ja CaO segu vöi Ca₄(PO₄)₂O kuumutamisel veeauru manulusel. On välja tõotatud uued hambatsemendi materjalid, lähtudes α-Ca₅(PO₄)₂-st, α-Ca₃(PO₄)₂ ja CaHPO₄·2H₂O või CaHPO₄·2H₂O ja CaCO₃ segust ning määratud kõvastunud materjalide omadusi mõjutavad tegurid. CaHPO₄·2H₂O, CaSO₄·2H₂O ja kaltsiumsilikaadi segu kuumutamisel saadi kaltsiumi suhtes defitsiitne hüdroksüapatiit (DAp). On kindlaks tehtud DAp, HAp, HAp ja SiO₂ ning HAp ja Ca₂P₂O₇ segu termilise lagunemise iseärasused.