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Abstract. The solid state formation of stoichiometric hydroxyapatite (HAp) was investigated in
detail by heating the Ca3(PO4),—CaO mixture and Ca,(PO,4),0 in the presence of water vapour.
HAp was an exceptionally thermally stable hydroxide even at high temperatures above 1000 °C and
at low water vapour pressures. New cementing materials consisting of ©-Ca;(POy)a,
0-Ca;3(POy), + CaHPO,-2H,0, and CaHPO,4-2H,0 + CaCO; were found and clarified with respect
to the hardening accompanying the formation of calcium-deficient hydroxyapatite (DAp),
hydration reactions with and without additives, and mechanical strength of hardened products. The
conversion of sparingly water-soluble CaHPO,-2H,0 and CaSO,2H,0O and a calcium silicate
mixture into DAp was successfully conducted. Thermal decomposition characteristics of DAp,
HAp, HAp + SiO,, and HAp + Ca,P,0; were elucidated in detail.
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INTRODUCTION

Preparation and decomposition reactions of hydroxyapatite, as well as those
of fluorapatite, are important. These reactions have become of increasing interest
in connection with various developments of functional materials of calcium
phosphate. Details of hydroxyapatite chemistry have been often reviewed by
various researchers including Kanazawa [1]. The composition of hydroxyapatite
is given stoichiometrically as Ca,o(PO,),(OH), (referred to as HAp) and calcium-
deficiently as Ca;o.x(HPO4)x(PO4)s.x(OH),_x-nH,0; 0< X < 1 (DAp). HAp-based
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ceramics are applied to bioactive materials with good biocompatibility, and
powdery and porously hardened DAp materials to bioactive materials, adsorbents
for biological macromolecules, ion-exchangers for heavy metal ions, and
catalysts for the decomposition of alcohols and chlorine-containing organic
compounds. The present paper presents the formation and decomposition
reactions involving HAp and DAp investigated so far by the authors.

SOLID STATE FORMATION

Ca;3(P0O,),—Ca0-H,0 vapour: The high temperature formation of HAp in
water vapour has been already reported by many researchers. The formation
reaction using Caz(PO,), is expressed as follows:

3Cay(PO,), + CaO + H,0 — HAp.

The equilibrium of this reaction is governed thermodynamically only by water
vapour pressure (py,o). For example, the equilibrium py,, at 1000°C is

10 mmHg [2]. HAp is an exceptionally thermally stable hydroxide. The authors
investigated the reaction in detail also under various conditions of mixing ratio of
the reactants, Puj0> heating temperature, and time as shown in Figs. 1 and 2 [3].

HAp was formed even in an atmosphere (py,o =2.4 mmHg) dried with silica
gel. The conversion increased with increasing py,o, temperature, and time.

Increasing mixing ratio of Ca3(PO,),/CaO was also effective as the reaction
contact area increased. Excess CaO after runs could be removed with NH,CI
aqueous solution. The obtained curves obeyed the Shinriki—-Kubo equation
derived for solid state reactions in a similar manner as the Jander equation.
According to Arrhenius plots of rate constants obtained at different temperatures,
an apparent activation energy for the HAp formation was 25 kcal/mol.

150

Time, min
Fig. 1. Effect of temperature on the Fig. 2. Effect of PH,0 ON the conversion (o)
conversion (o) of Ca3(PO4), into HAp. of Cay(POy), into HAp. 3Cay(PO,),/5CaO
3Ca;(P0O4),/5Ca0 mixture, PH,0 23 mmHg. mixture, temperature 1200 °C.
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Cay(PO4),0-H,0 vapour: Tetracalcium phosphate (Cas(PO,),0) is known
as a mineral called hilgenstockite contained in sludge in the steel industry. The
formation of HAp during heating Ca,(PO,),0 in air was established and clarified
as follows by repeated TG, XRD, and IR [4]:

~420 °C ~850 °C ~1200 °C
Cay(PO4),0 — HAp +2Ca0 — (H-O)Ap + 2Ca0 — Cay(PO,4),0
T t <1050 °C, in air
quenching

where (H-O)Ap is hydroxyoxyapatite formed by partial dehydration of HAp.
Cay(PO,),0 adsorbed easily H,O at temperatures below 1050°C and changed to a
mixture of HAp and CaO. Figure 3 shows the thermal stability or instability of
Cay(PO,),0.
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water vapour (12—15 Torr).

HYDROLYSIS FORMATION ACCOMPANYING HYDRAULICITY

o-Casz(POy),: Although Cas(POy), seemed to be chemically stable in water,
the high temperature form o prepared by quenching was found to have a
comparatively high hydration activity accompanying hydraulicity [5]. The
hydration reaction of 0-Ca;(PO,), was given as follows [6]:

Below pH 5.5:  Ca3(POy), + HyO — 2CaHPO,-2H,0 + Ca(OH),;

pH 5.5-7.5: 3C&3(PO4)2 o+ 7H20 = CagHz(PO4)6'5H20 S5 Ca(OH)z;

Above pH7.5: (1 -X)Ca3(PO4); +3(2 + n-2)H,0O

— 3Ca;o_x(HPO4)x(PO4)sx(OH),_x-nH,0 + 2(1 — X)H;PO,.

The reactions forming octacalcium phosphate (CagHy(PO4)s:5H,O) and DAp
accompanied hydraulicity. Figure 4 presents photographs of hardened DAp.
Hardened DAp bodies prepared at 80°C had 55-80% porosity and 3-30 MPa
compressive strength [7]. The hydration was influenced by various water-soluble
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additives such as NH4Cl, NaCl, NaH,PO,, CH;COONH,, etc. The hydration
conversion of o-Ca;z(PO,), into DAp under initial conditions of pH 6.0 and 3 h
treatment at 40°C was adjusted to 0-90% by additives and setting times of
4-30 min [8].

Fig. 4. Photographs of hardened DAp. Left: hardened DAp (left 3 pieces) at 80°C and sintered
DAp (right 2 pieces) at 1100 °C. Right: microstructure of hardened DAp.

a-Caz(PO,),-~CaHPO,2H,0: Since the finding of the hydraulicity of
0-Ca3(POy), [5], the system CaO-P,0s has become of interest especially in the
field of biomaterials as a new cementing composition system. Brown and Chow
[9] presented independently the Cay(PO,),0-CaHPO,-2H,0 combination, and the
present authors have also proposed the a-Caz(PO,),—CaHPO,-2H,0 combination
[10]. The overall hydration reactions of these were expressed as follows:

2CZ‘14(PO4)20 2 2C3.HPO42H20 S CagHz(PO4)6'5H20 Sht 4H20,

2Cﬂ}(PO4)2 == 2C3HPO42H20 2Je HzO ==X CagHz(PO4)6'5H20.

Setting times in the latter system were adjusted to 9 min—2 h by changing the
mixing ratio of the reactants. Mechanical strengths of the resulting hardened
bodies increased up to 20 MPa (wet) and ca. 40 MPa (dry) in compressive
strength in a 0.9% NaCl physiological solution.

CaHPO,2H,0-CaCOj3: The conversion of CaHPO,-2H,0 into octacalcium
phosphate or DAp or HAp in solution is made by continuously controlling an
alkaline medium. The resulting products are obtained as powder because the
reaction system has to be stirred for the reaction to proceed. However,
CaHPO,4-2H,0 mixed with CaCOj; transformed to octacalcium phosphate or DAp
without stirring [11]. As a result, hardened products were obtained. CaCO;
seemed to act as a “solid pH-buffer”. Figure 5 shows the conversion fraction of
CaHPO42H,0 in the system with and without F. The addition of F~ was very
effective for the acceleration of the conversion, but not for the hardening.
Reaction products were octacalcium phosphate at 50°C and carbonated DAp at
80°C [12]. The resulting hardened bodies have 70-80% porosity and
0.3-1.5 MPa diametral tensile strength.
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Fig. 5. Hydrolysis of CaHPO,4-2H,0 in the system CaHPO,4-2H,0-CaCO;-H,0 with F~ (right) and
without F~ (left). ® Tightly hardened, A weakly hardened, X non-hardened.

CONVERSION OF CALCIUM PHOSPHATE, SULPHATE, AND
SILICATE INTO HYDROXYAPATITE

Calcium phosphate: The hydrolysis conversion of brushite (CaHPO42H,0)
into DAp and HAp was investigated on the basis of the following two-step idea
[13]:

CaHPO,4-2H,0 — DAp — HAp,

where the first step (I) is the structural change of brushite into apatite with a Ca/P
ratio of 1.50 and the second (II) subsequent compositional increases up to
Ca/P = 1.67 keeping the apatite structure. The maximum reaction rate of
Reaction I occurred around pH 8. Hydrolysis time for the complete conversion at
pH 8 was within 2.5 h at 40°C, 1 h at 60°C, and only 5 min at 80°C. The Ca/P
ratios of DAp thus formed were about 1.50 (40°C, 3 h) and 1.60 (80°C, 5 h). The
value 1.60 seemed to be a limit as shown in Fig. 6. The addition of Ca®* in an
attempt to increase the Ca/P ratio was highly inhibitory to the hydrolysis of
CaHPO,-2H,0 as shown in Fig. 7. In order to increase the Ca/P ratio, DAp was
once separated from the mother liquor of Reaction I, and treated in alkaline

1.60 100~
é 1.58 < 80|
1.56 o
154 E pb
% 1352, I, %
o 8 20
1.50 - @@ 40°C (pH 8) s
I ! I I | 0
0 1 2 3 4 S 0 1 2 3
Hydrolysis time, h Hydrolysis time, h
Fig. 6. Increases in Ca/P ratio of DAp formed Fig. 7. Conversion of CaHPO,-2H,0O into
in Reaction] as a function of pH and DAp with (®) and without (O) addition of
temperature. Ca’* in Reaction I (40 °C, pH 8).
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solutions with Ca*" added, i.e., Reaction II. In Reaction II, increasing pH and/or
adding Ca” were effective for increasing the Ca/P ratio up to 1.67 of HAp. This
two-step process was convenient for the preparation of DAp and HAp.

Calcium sulphate: Gypsum hemihydrate (CaSO40.5H,0) has good
hydraulicity. If the resulting hardened gypsum (CaSO42H,0) bodies could be
converted into crack-free hardened DAp bodies, a new preparation process for
hardened DAp would be proposed. The conversion reaction could apparently be
given by an exchange reaction of anions, i.e.:

CaS0,-2H,0 + HPO,> — Ca;ox(HPO,)x(PO4)s_x(OH),_x-nH,0 (DAp) + SO,

Since the difference in density between CaSO,2H,0 (2.3 g/em’) and DAp
(~3.2 g/em®) might cause an occurrence of cracks during the conversion, the
preparation of crack-free DAp bodies was not easy. Runs were carried out by
dipping hardened gypsum bodies (porosity 24%, compressive strength 43 MPa) in
(NH,4),HPO, solutions of 0.1-1.0 mol/dm’ at temperatures of 80-160°C [14].
Crack-free DAp hardened bodies with porosities of ca. 60% were obtained by
dipping in the solution of 1.0 mol/dm’ at 100-140°C for 5 days. However,
remarkable increases in porosity, in other words, decreases in strength, were
observed. Increasing pH and the concentration of the solution were effective for the
crack-free conversion. Figure 8 shows the appearance of DAp bodies with and
without cracks and the microstructure of CaSO,4-2H,0 and DAp hardened bodies.

Fig. 8. DAp bodies (left) converted from hardened CaSO,-2H,0 bodies and SEM microphoto-
graphs of hardened CaSO,-2H,0 (middle) and DAp (right). == 10 um.

Calcium silicate: Calcium silicates in Portland cement are typical cementing
materials. Hardened calcium silicate bodies (mortar bodies) have an interesting
skeleton microstructure. If such a structure was replicated into that of hardened
DAp, it must be a new process for porously hardened DAp. The mortar
consisting of alite, belite, gypsum, and sand (silica) was hydrated and hardened,
then the resulting hardened mortar was dipped in phosphoric acid solutions of
0.01-1.0 mol/dm’ at pH values of 7.5-11 at 40-100°C for 10 min to 4 h [15].
Figure 9 shows the mortar surfaces before and after dipping in 0.1 mol/dm’
(NH,4),HPO,. The particles covering the mortar surface were identified to be DAp
with scaly, porous, and submicron square particles of about 100 nm thickness.
The coverage became clearer under the conditions of pH 10 and 100°C for 4 h in
1.0 mol/dm’ H;PO,.
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Fig. 9. SEM photographs of DAp (right) on the surface of a hardened mortar (left). (60 °C for 4 h in
0.1 mol/dm® (NH,),HPOj solution).

THERMAL DECOMPOSITION

DAp: Figure 10 shows the TG and DTA curves of DAp. The thermal changes
of DAp were summarized as follows [16]:
I: Evolution of adsorbed H,O
II: Liberation of lattice H,O
Appearance of an ESR signal above 180°C
II: Condensation of HPO,> (2HPO,> — P,0,* + H,0T)
Formation of apatite with a composition Ca;o_x(P,07)x(PO4)s_2x(OH),
Increases of the ESR signal up to 520°C and disappearance at 600 °C
IV: Unidentified
V: P,0," +20H — 2P0, + H,0T
Formation of (1 — X)HAp + 3XCa;3(POy),
In addition, the reaction PO, + lattice H,O — OH™ + 1/2P,0;" + 1/2H,0T
occurred in the range of 250 to 600°C. The ESR signal probably arose from
trapped electrons in a locally distorted apatite structure induced by the
condensation of HPO,”". Partial fluoridation of DAp inhibited completely the
weight decrease above 500°C [17]. The composition of the resulting apatite was
Ca;ox(P207)x(PO4)s2xF2x(OH)x, which was stable even at 1340°C.
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HAp with and without SiO,: HAp is an exceptionally thermally stable
hydroxide as mentioned above. Figure 11 shows the thermal decomposition of
HAp and a mixture of HAp + SiO, in N,. The self-decomposition of HAp was
given as

HAp = Calo(PO4)6(OH)2(1_x)OxDx et XHon (800—900 OC)

— 2Ca3(PO,), + Cay(PO4),0 + 2(1 - X)H,0T (~1250°C)
where [ is vacancy [18]. The reaction with SiO, could be given as

HAp + SiO; — Ca3(POy),, CaO-SiO, compounds, HZOT (~900°C)

= Ca4(P 04)20, Ca3(PO4)2-CaZSiO4, Other CaO—P205—Si02
compounds (~1250°C).
The HAp-SiO, reaction increased with increasing the amount of SiO, addition;
however, it decreased remarkably with introducing water vapour [19]. The
thermal stability of the apatite structure was increased significantly by partial
substitutions of F~ for OH as shown in Fig. 12.
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Fig. 11. Decomposition (o) of HAp with and Fig. 12. Decomposition (o) of fluoridated
without SiO, after thermal treatment for 3 h HxAp (Ca;o(PO4)s(OH), xFx) with and with-
in N,. out SiO, after thermal treatment for 3 h in N,.

HAp-Ca,P,0;: Figure 13 shows the TG and DTA curves for DAp and a
mixture of HAp and Ca,P,0; [20]. The weight loss of DAp at 700-900°C was
due to the ionic reaction, OH™ + P,0,* — pi 5 Y HZOT as well as in the case
of DAp described above, which accompanied the decomposition of the apatite
structure into the B-Casz(PO,), structure. From the similarity of TG curves
between DAp and the HAp + Ca,P,0; mixture, the following reaction can be
written:

Ca;o(PO4)s(OH), + CayP,0; — Ca;(PO4)s[20H + P 2074_]

— Cayp(PO4)s[2PO, ] + H,OT (i.e., 4Cas(POy), + H,OT).
According to the Kissinger plots for DTA peaks around 700-900°C, apparent
activation energies for the decompositions were 90 kcal/mol for DAp and 50
kcal/mol for the HAp—Ca,P,0O, mixture.
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SUMMARY

Stoichiometric and calcium-deficient hydroxyapatites (HAp and DAp,
respectively) have been reviewed with respect to the solid state formation,
hydrolysis formation accompanying hydraulicity, conversion of sparingly water-
soluble calcium compounds, and thermal decomposition characteristics. HAp
was confirmed to be an exceptionally thermally stable hydroxide. The solid state
formations of HAp were investigated in detail by heating the Ca;(PO,),—CaO
mixture and Cay(PO,),0 in the presence of water vapour. New cementing
compositions of 0-Ca;(PO,),, 0-Ca;3(PO,), + CaHPO,-2H,0, and CaHPO,-2H,0
+ CaCO; were proposed and the hydration reactions and mechanical strengths of
hardened products were clarified. The conversions of sparingly water-soluble
CaHPO42H,0 and CaSO,4-2H,0 and a calcium silicate mixture into DAp were
successfully conducted. Thermal decomposition characteristics of DAp, HAp,
HAp + SiO,, and HAp + Ca,P,0; were elucidated.
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HUDROKSUAPATIIDI REAKTSIOONIKEEMIA:
TEKE JA LAGUNEMINE

Takafumi KANAZAWA, Hideki MONMA ja Yusuke MORIYOSHI

On kirjeldatud suure termilise piisivusega hiidroksiiapatiidi (HAp) saamist
tahkes faasis Ca;(PO,), ja CaO segu voi Cay(PO,),0 kuumutamisel veeauru
manulusel. On vilja tootatud uued hambatsemendi materjalid, ldhtudes
0-Caz(POy),-st, 0-Ca3(POy), ja CaHPO,2H,O voi CaHPO42H,O ja CaCO;
segust ning mdadratud kdvastunud materjalide omadusi mojutavad tegurid.
CaHPO,-2H,0, CaS0,2H,0 ja kaltsiumsilikaadi segu kuumutamisel saadi
kaltsiumi suhtes defitsiitne htidrokstiapatiit (DAp). On kindlaks tehtud DAp,
HAp, HAp ja SiO, ning HAp ja Ca,P,0; segu termilise lagunemise isedrasused.
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