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Marine invertebrates are a productive source of novel sterols. Many isolated

novel compounds have unique biological properties [l].
In our laboratory® three 9,11-secosterols (1la—1c) were recently isolated from

the soft coral Gersemiafruticosa (Octocorallia, Alcyonacea, Nephtheidae) [2, 3]
and the inhibiting effect of (1a) on the cell cycle progression in Go/M phase was

demonstrated [4].
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In this communication we propose an advanced intermediate for partial
synthesis of 9,11-secosterols. For some earlier examples of partial synthesis of

sterols see in [5, 6].
We started with cheap and stereochemically proper ergosterol (2) and the

transformations shown on the following scheme were carried out.

REAGENTS, SOLVENTS (AND PRODUCTS NOT SHOWN ON THE

SCHEME)

ri: (Ac)o, pyr., cryst, methanol-benzene (2a); r,: PTAD, acetone, cryst.,
ethanol-benzene (2b); r;: ozone, pyr., CH,CI,, —=7B°C [7], chrom., benzene-

acetone /20:1/; r,: CH,OHCH,OH, pTSA, CH,CI,, chrom., petrol ether-acetone

/8:1-6:1/(3a); rs: LiAIH,, THF, A, chrom., chloroform-acetone /50:1-40:1/, r;:

(4a); re: a. BH;, THF, b. H,0,, NaOH, c. r;, chrom., petrol ether-acetone-
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dichloromethane /15:1:1/; r;: Hg(OCOCHj;),, CHCI;, CH;COOH, chrom., petrol

ether-diethylether /5:1/ (6a—6b); rg: OsO4, dioxane, chrom., chloroform-ethanol

/19:1/ (6¢); ro: LiAIH,, diethylether, chrom., chloroform-ethanol /9: 1/ (rg—rg as in

[S]). (2) from “Sigma”, min. 90% purity.
All reaction products were purified over silica (if not stated otherwise) using

flash chromatography under slight pressure and were obtained as crystallinic
substances. The yields were not optimized.

The aldehyde (3) was obtained as pure 20S epimer, el™ <1209 (046
CHCI;). After customary protection/deprotection procedures, resulting in (4),

ethylene acetal (5) was prepared smoothly with the necessary o-orientated

(equatorial) hydroxyl group at C-6 (9.8 Hz coupling between H-6 and H-5). In

the dehydrogenation step three chromatographic fractions were obtained. The

expected diene-acetal (6) was found in the second fraction together with the

starting acetal (5). In the first and third fractions the corresponding 3-acetyl- and

3,6,12-triacetyldiene acetals were identified/designated respectively as (6a) and

(6b) [B]. The intermediate osmate ester (6¢c) was cleaved immediately to the

tetrolacetal (7) obtained from ergosterol with ca 10% yield.
The 38,60,90,110-tetrahydroxy-50-pregn-7-ene-20(S)-carbaldehyde ethylene

acetal (7) was prepared using quite a short sequence of transformations, whose

preliminary outlines were given above. It is an advanced intermediate in the

synthesis towards target compounds. This molecule has necessary functionalities

for introduction of the side chain and for selective cleavage of the bond between

carbon atoms C-9 and C-11 resulting in keto functions at these atoms. With the

aim of improving the limiting dehydrogenation step, other methods, among them

microbiological 11-hydroxylation of ethylene acetal (5), are being studied.

CHARACTERIZATION OF COMPOUNDS

(2a) m.p. 177-179, (2b) 173-174°C.

(3) m.p. 173-175°C, [a]p'® =l2o° (0.46, CHCI;), NMR on Bruker AMX 500 at

125.7 MHz for °C and 500.17 MHz for 'H (in parentheses) in CDCI;: C-1 33.62

(1.78 and 1.84); C-2 25.88 (1.65 and 2.15); C-3 70.37 (5.46); C-4 30.86 (2.21
and 3.24); C-5 65.30; C-6 and C-7 128.66 and 135.44 (6.41 and 6.27): C-8 64.58:
€-9 52.73 (1.81); C-10 41.00; C-11 22.26 (1.41 and 1.51); C-12 37.83 (1.37 and

2.01); C-13 44.29; C-14 48.71 (2.39); C-15 23.66 (1.64 and 2.65); C-16 26.00

(1.51 and 2.04); C-17 50.42 (1.70); C-18 17.43 (1.00); C-19 13.47 (0.85); C-20

48.66 (2.39); C-21 13.79 (1.16); C-22 204.45 (9.58); NCO at 146.68 and 149.12;
phenyl: C, 131.53; C, 126.18 (7.42); C 128.83 (7.41); C, 127.83 (7.31).
(32) m.p. 204-206°C.

(4) m.p. 163-165°C.
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(4a) m.p. 144-147°C NMR (in CDCI3): C-1 37.87 (1.36 and 1.89); C-2 28.08

(1.58 and 1.91); C-3 72.75 (4.69); C-4 36.63 (2.38 and 2.47); C-5 141.16; C-6

and C-7 120.14 and 116.47 (6.22 and 6.45); C-8 138.68; C-9 46.01 (2.00); C-10

37.07; C-11 23.17 (1.44 and 1.73); C-12 38.93 (1.31 and 2.08); C-13 43.26; C-14

53.82 (1.91); C-15 20.99 (2.04); C-16 27.25 (1.45 and 2.00); C-17 52.05 (1.51);
C-18 11.63 (0.63); C-19 16.14 (0.95); C-20 39.60 (1.81); C-21 11.71 (0.95);
C-22 106.01 (4.87); —O—CH,—CH,—OO— 65.04 and 65.21 (3.86, 3.87, 3.93,

3.95); OAc 21.36 (2.04) and 170.45.

(5) m.p. 205-207°C, [a]p” +76° (0.26, CHCIS), (5) NMR (in CDCIS): C-1 36.63

(1.24 and 1.81); C-2 27.11 (1.49 and 1.83); C-3 72.62 (4.68); C-4 29.63 (1.34
and 1.93); C-5 44.80 (1.58); C-6 73.06 (5.06); C-7 118.03 (5.05); C-8 142.68;
C-9 48.76 (1.78); C-10 35.30; C-11 22.83 (1.43 and 1.61); C-12 38.93 (1.31 and

2.04); C-13 43.89; C-14 54.13 (1.87); C-15 21.22 (1.47 and 1.63); C-16 26.97

(1.45 and 1.96); C-17 52.20 (1.51); C-18 11.75 (0.55); C-19 13.83 (0.92); C-20

39.47 (1.78); C-21 11.66 (0.94); C-22 105.88 (4.85); —O—CH,—CH,—O—-
— (3.85 and 3.97) and 65.18 (3.85 and 3.93); OAc 21.31 (2.05) and 21.36

(2.03); 170.54 and 171.26.

(6) MS: 472 (M), 412 (M" —6O), 352 (M* —120), UV, Amax: 251.5, 242.0, 235.0 nm.

(6a) MS: 414 (M), 354 (M* --60), UV, Aax: 250.5 nm.

(6b) MS: 531 (M" +1), 471 (M* --59), 410 (M* —-120), 350 (M* -180), UV, Amax:
249.5, 242.5, 236.0 nm.

(7) m.p. 212-213°C, [a]p'® +lO (0.70, CHCI3), NMR (in pyridine d5): C-1 33.05

(2.46a 2.82¢); C-2 32.70 (2.02a 2.32¢); C-3 70.24 (4.11a C-4 36.00 (3.31e

1.97a); C-5 43.51 (2.66); C-6 69.56 (4.32); C-7 129.56 (5.99); C-8 139545 CH

75.18; C-1041.25; C-11 69.53 (4.60); C-12 47.41 (2.56¢, 2.14a); C-13 43.64,
C-14 50.63 (2.91); C-15 23.46 (1.61); C-16 27.43 (1.56 and 2.06); C-17 52.60

(1.90); C-18 12.47 (0.80); C-19 16.21 (1.44); C-20 39.96 (2.01); C-21 12.29

(1.24); C-22 106.10 (5.02); —O—CH,—CH,—OO— 65.58 and 65.66 (3.86, 3.89,
3.98 and 4.00).

NMR data were assigned by 2D 'H - 'H and 'H -">C COSY correlation

diagrams. MS measurements: EI — 70 eV, CI - isobutane, gas-chromatographic
separation: 200-300°C, RLS -150, 10 m.
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