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INTRODUCTION

Using Brower’s approximation in the electroneutrality condition, numerical

values of the slopes in the high temperature native defect concentration

dependence upon the component partial vapour pressure can be found [l]. This

method is used also for resolving the defect structure in ternary compounds [2].
A method for the calculation of the high temperature equilibrium is proposed in

[3].
The description of frozen-in eguilibrium of defects in compound semi-

conductors is the practical output for the investigation of the high temperature
eguilibrium of defects. In this paper a method for the calculation of the frozen-in

equilibrium of defects inZnS:Cu:AI:Bi:CI is proposed.

DESCRIPTION OF THE FROZEN-IN EQUILIBRIUM OF DEFECTS

First a system of quasichemical equations for the description of the high
temperature equilibrium will be solved. The defect model contains single point
defects as well as double and triple associated defects. We take into account the
low diffusion rate at high cooling rate of the crystal. The situation corresponding
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to the frozen-in high temperature equilibrium is described by the following

equations and conditions:

1. The equations of balance of the same type of defects.

2. The total concentration of the same type of defects does not change during
the cooling process. Only interchanging of charges between defects according to

the rules of ionization at frozen-in temperature occurs.

3. No defects of new type will be created or disappear during the cooling of

the crystal.

CALCULATION OF FROZEN-IN DEFECT CONCENTRATIONS

For calculation purposes we selected defects in ZnS:Cu:AI:Bi:CI falling in

three groups:

Group A: Neutral double and triple associated defects having no charged

analogue: (CuiCugz,)”, (CuzCls)*, (Alzßis)*, (Clsßis)", (CuzAlz,)*, (Cußis)”™,
(Alz;AlznVzn), (BisßisZny)*, (BisßisVs)*, (ClsAlzVzy)*, — (ClsClsVzn),
(Cuz,BisZn;)", (CuzßisVs)", (Cuz,CuzZn)*, (Cuz:CuzVs)*, (CuiAlz,Vzn)™,
(CuiCISVZn)Xa (CuicuiVZn)x-
Altogether 18 defects.

Group B: Defects existing in three different states of ionisation: Vs, Vs, Vs’;

VznS Vzn» Vza; Zni, Zni, Zni'; (VsVza), (VsVa), (VsVaa)'s (ZniVz), (ZniVa),
(ZniVzn)

Altogether 15 defects.

Group C: Defects existing in two different states of ionisation: Cu;”, Cu;;

Cuzn> Cuzn; Cls, Cls; Alzr, Alzn; Bis”, Bis,š (CuzVs)”, (CuznVs); (CuiVzn),
(CuiVz); (ClsVz)*, (ClsVz); (CuzaZn)’, (CuzZny); (Zmßis), (Znßis);
(AlznVzn); (AlznVzn); (BisVs); (BisVs); (AlmZniVz)', (AlaZniVzn);
(AlznVsVzn), (AlznVsVzn); (BisZniVz,)", (BisZniVzn); (BisVsVzi)", (BisVsVzn);
(ClsZniVzn)”, (ClsZniVzn); (ClsVsVzn), (ClsWYsVzn); (ZmiZniVzn)”, (ZniZniVzn);

(ZniVSVZn)X, (ZniVsVzn); ('ZÜiVZnVZn)Xa (ZniVznVzn) ; (VSVSYZn)X, (VsVsVzn);

(VSVZnVZn)Xa, (VsVznYzn); (CuznrZniVzn), (CuzeZnVz); (CuzVsVaz),
(CuznVsVzn) ; (CuiZniVzn)", (CuiZniVzn); (CuiVsVzn)*, (CuiVsVzl).
Altogether 54 defects.

The calculation of frozen-in defect eguilibrium is different from the

calculation of the defect eguilibrium at high temperatures, where we got an

eighth order system of equations and solved this by the triple iteration method.

First the sum of the defects of the same type in groups B and C can be found.

Then equations will be created for all double and triple associated defects. We

present the concentrations of all defects of the same type through one of them.

For example, the equilibrium between defects
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can be expressed as follows:

V=V, +¢, KB,=L[&]'T-N

Vo =V;+¢, Km:[VS"J"
|Vs'|'

From these equations we find:

[vs] = B ]

[ve] =ozl]-B [ve]
n n

The sum [VS]TOT of these defects can be expressed as follows:

bl kvle

[VS]TOT = [st] [l+£<—B—l—+l<.Bll2<—B2),n n

[1 +—Knßl + —KBIIIIžBZ): ay,,

[VSX] — [VZ]V':OT ; [VS] — KBlr[l::is]TOT ; [VS] — KBIIšnBZZš::S]TOT ,
In this way we can find the concentrations of all defects via the total

concentration of the same type of defects. To complete the calculation we solve
the electroneutrality equation by the iteration method and check the validity of

the equations of material balance.
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