
Proc. Estonian Acad. Sci. Chem., 1992, 41, 1, 36—39

36

UDC 547.7:542.943.7

Aarne BOGDANOV*

OXIDATION OF CARBAZOLE BY HYDROGEN PEROXIDE

Aarne BOGDANOV. KARBASOOLI OKSUDEERIMINE VESINIKPEROKSIIDI TOIMEL

Аарне БОГДАНОВ. ОКИСЛЕНИЕ КАРБАЗОЛА ПЕРЕКИСЬЮ ВОДОРОДА

The elucidation of the role of chemical carcinogens in the aetiology
of cancer has received much attention in recent decades. Part of the

efforts have been directed to the role which could be played by poly-
cyclic heterocyclic hydrocarbons (PHH), resulting in an increasing
number of biological and chemical studies involving these compounds.
Such research results in the production of wastes contaminated with

PHH and the handling of these products involves the risk of con-

taminating work rooms and laboratory equipment. For these reasons the

author investigated chemical degradation techniques which could be

applied in such situations. _ :
The investigation of literature indicates that chemical degradation

of carcinogenic N-containing five-cyclic hydrocarbons (e.g. dibenzo-
carbazoles and dibenzacridines) has not received much attention and

only a few references could be found [*%]. On the other hand, it seems

interesting that Monsen et al. [] showed degradation of phenol to car-

bon dioxide and water when hydrogen peroxide was used. Our aim was

to elucidate the usefulness of this degradation technique or its analogs
for the destruction of carcinogenic dibenzacridines and dibenzocarbazoles
to non-carcinogenic products, which to our knowledge has never been

studied. Here we describe the oxidation of carbazole that is a simple
and cheap non-carcinogenic model compound for dibenzocarbazoles.

; Experimental

Degradation of carbazole. The degradation of carbazole was investigated
using treatment by hydrogen peroxide alone and in the presence of

manganese(ll) chloride or iron(1I) sulphate. Experiments were carried

out with carbazole (technical grade) purified from ethanol-water (1:1)
by recrystallization, mp. 245°C, in the concentration range of its water

solubility [9], at 254+1°C. 5 ml of hydrogen peroxide solution (30%)
was added to 50 ml of carbazole solution with magnetic stirring. The

concentration о! carbazole was measured with spectrophotometer
“SPECORD M 40”. When needed, 1 ml 0.1 M solution of manganese (II)
chloride or iron(II) sulphate was added. The samples were collected at

fixed intervals and extracted with 10 ml n-hexane (analytical grade).
The concentration was determined spectrophotometrically. After that, ex-

periments were repeated 2 to 4 times.
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Results and Discussion

The kinetics of carbazole oxidation using hydrogen peroxide is

depicted in Figs. I—3. The process of the conversion of carbazole up to

60—80% in the presence of manganese or iron salts is described by
second-order formal-kinetic equations. As the results show (Table), the
addition of manganese(ll) chloride or iron(II) sulphate to the degra-
dation medium accelerates the process of carbazole destruction; the most
effective is the combination of hydrogen peroxide with iron(II) sulphate.

Fig. 1. Kinetics of carbazole oxidation by hydrogen peroxide at 2541 °C

Fig. 2. Kinetics of carbazole oxidation by hydrogen peroxide in the presence of man

ganese(ll) chloride at 2541 °C.
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The data obtained do not allow of the establishment of the mechanism
of carbazole oxidation, but it is generally accepted [7] that the addition
of iron(II) ions to hydrogen peroxide (Fenton’s reagent) generates active

forms of oxygen (e.g. reactive hydroxyl radical), which accelerates for

example the oxidation of aromatic compounds. A simplified scheme of
the conversion of iron(II) ions is as follows:

Fe+4H,os — Fe3+4+-HO"4+HO-,

Fe*+HO; — Fe**4-HO,, ,
HO+H2O2 —> Н2О+НО2 ,

Fe?f*'+HO'2 — Fe*++HO,,
Fe*++HO; — Fe**+oO2-+H*,

HO;, = H+4o,
Fe++or — Fe2+4+oO2.

To conclude, the above-said and experimental results indicate to the

possibility that the oxidizing system containing iron(II) sulphate and

hydrogen peroxide could be used in the process of the destruction of

carcinogenic dibenzocarbazoles.

Fig. 3. Kinetics of carbazole oxidation by hydrogen peroxide in the presence of iron(II)
sulphate at 2541 °C. .

Oxidizing system l C xX107, M \ CaNl“t;).}ggltr/aI‘?z(())z I Ty/2, Min

H,0, 5.76 1/ — /103 1020

MnCl;+H,0, 5.72 1/5X 102/103 48

FeSOi+H»0Oa2 5.87 1/5X102/103 0.8

Initial concentration (C,), molar ratio, and hali-life (т:уз) of carbazole degradation
by different oxidizing systems at 25+1°C -
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