1986, 35, 1

УДК 662.67:66.060

Лиа НАППА, И. КЛЕСМЕНТ, Наталья ВИНК, Х. ЛУЙК

ИССЛЕДОВАНИЕ ГОРЮЧИХ СЛАНЦЕВ СЫСОЛЬСКОГО МЕСТОРОЖДЕНИЯ КОМИ АССР

5. ПРЕВРАЩЕНИЯ СМОЛЫ ПОЛУКОКСОВАНИЯ В АВТОКЛАВЕ

В настоящем исследовании приводятся результаты изучения смолы полукоксования сысольского сланца методом гидрогенизации в автоклаве. Хотя сысольский сланец относится к сернистым сланцам, в его смоле полукоксования серы содержится даже меньше, чем, например, в сланцах Чаганского месторождения [¹]. Состав сысольского сланца, вес. %: A° 65,9; (CO₂)_{мин} 5,3; S_{общ} 2,5; элементный состав органического вещества, вес. %: С 57,5; Н 7,0; N 2,0; S 2,8; О 30,7; Н/С атом. 1,36. Смола полукоксования сысольского сланца была получена на опытном генераторе Института сланцев (г. Кохтла-Ярве). Ее подробная характеристика приведена в [²]. Смола имеет относительно высокий молекулярный вес, высокое содержание серы и умеренное содержание кислорода и азота (табл. 1). Естественно, что смола, в состав которой входит 4,8% серы, непригодна в качестве топлива.

Цели работы — снижение содержания серы и других гетероэлементов под действием восстановительных реактивов, исследование механизма превращения смолы при относительно низкой температуре, под давлением, создаваемым водородом и парами воды, исследование влияния растворителей (разбавителей) в этих процессах.

Для выведения гетероэлементов в виде H₂S, NH₃ и H₂O и предотвращения образования кокса необходимо при автоклавной обработке дополнительно вводить в смолу водород. Источником водорода может быть молекулярный водород в газовой фазе, водород из растворителей, являющихся донорами водорода, а также водород, образующийся in situ, из реакции между металлическим цинком и водой [3]. Так как последняя реакция протекает при температурах, превышающих 400°C, когда проходит и активное разложение сланцевой смолы, применение этого метода в настоящем случае неперспективно. Издавна при восстановительной деструкции твердых ископаемых применяются водные растворы формиата натрия [4], которые при высоких температурах реагируют с образованием водорода $HCOONa + H_2O \rightarrow NaHCO_3 + H_2$. В [^{5, 6}] установлено, что вода сама может выступать гидрирующим агентом, так как при высокой температуре она реагирует с активными группами органического вещества: C+H₂O→CO+H₂. Двуокись углерода окисляется дальше с образованием дополнительного количества водорода: CO+H₂O → CO₂+H₂. Прибавление к воде щелочи повышает выход продуктов гидрогенизации, и разложение проходит более глубоко. Достоверно установлена нестабильность фенольных, карбонильных и эфирных групп при нагреве в щелочной среде [7].

Процессы передачи водорода протекают более активно в жидкой фазе и в присутствии катализаторов. Растворители также разбавляют

образующиеся продукты и предотвращают вторичные процессы полимеризации и конденсации. В процессах гидрогенизации твердых топлив и первичных смол их деструкции в качестве растворителей обычно используют дистилляты, получаемые в этих процессах; в условиях гидрогенизации эти растворители находятся в жидкой фазе. В настоящей работе мы использовали низкокипящие растворители — бензол и толуол, которые при данной температуре опытов (375°), находятся, как и вода, в суперкритической фазе [8]. Углеводородные растворители облегчают деполимеризацию высокомолекулярных соединений, особенно в суперкритической стадии. Катализаторами в данной работе использовали смесь окиси кобальта и молибдена (Co+Mo/Al2O3), а также хлористый цинк (ZnCl₂), широко применяемые в нефтеперерабатывающей промышленности и деструктивной гидрогенизации углей. Каталитическое действие этих катализаторов существенно различается, так как первый является, в основном, передатчиком водорода, а второй, как типичный катализатор Фриделя-Крафтса, способствует реакциям деалкилирования и деполимеризации.

А. Кричко с сотрудниками [⁹] применяли Со+Mo/Al₂O₃-катализаторы при гидрогенизации углей Канско-Ачинского бассейна, а также при гидрокрекинге и гидроочистке полученных жидких продуктов. Со+Mo/Al₂O₃-катализаторы часто используют и при гидрировании тяжелых остатков нефтей. Было установлено снижение содержания серы, а также деалкилирование ароматических соединений в продуктах гидрирования [¹⁰]. Однако японские ученые считают при гидрогенизации углей более эффективным ZnCl₂, чем Co+Mo/Al₂O₃ [¹¹]. Исследуя влияние количества ZnCl₂ на выход жидких продуктов, они нашли, что оптимальны его добавки в количестве 5—10% [¹²], но на среднюю молекулярную массу катализата количество ZnCl₂ влияния не оказывает. ZnCl₂ расщепляет связи между структурными единицами без значительного изменения самих структурных единиц [¹³].

Д. Мобли и А. Белл [¹⁴], изучая влияние ZnCl₂ на расщепление эфирных связей при гидрогенизации углей, нашли, что этот катализатор способствует ожижению угля с умеренной затратой водорода. ZnCl₂ катализирует расщепление эфирных связей и этим содействует снижению молекулярной массы и увеличению количества фрагментов, способных растворяться в ароматических и гидроароматических растворителях. Связи Ar—CH₂—O—CH₂—Ar и Ar—O—CH₂—Ar расщепляются с элиминированием кислорода. В настоящей работе при каталитической гидрогенизации смолы использовали оба катализатора (Co+Mo/Al₂O₃ и ZnCl₂), а также исследовали превращения смолы в водной среде без подачи газообразного водорода. Со смолой полукоксования кукерсита подобные опыты были проведены уже ранее [¹⁵]. Сравниваются превращения обеих смол.

Экспериментальная часть

Все опыты проводили в качающемся автоклаве емкостью 0,5 л. Температура опытов 375°, время 2 ч с момента достижения данной температуры. Соотношение смола и вода (или органический растворитель) 1:7 (20 и 140 г). Этого количества достаточно для создания критического давления при критической температуре. Температура опыта 375° значительно превышала критические температуры бензола и толуола (290 и 320° соответственно), но высокая плотность паров (280 г/л) обеспечивала растворение в них смолы и гидрогенизата.

В автоклаве были проведены следующие опыты:

I. Гидрогенизация, первоначальное давление водорода 5 МПа;

8

1) катализатор Co+Mo/Al₂O₃ в количестве 10% от веса загружаемой в автоклав смолы: а) без растворителя, б) в среде бензола.

2) катализатор ZnCl₂ в количестве 10% от веса загружаемой в автоклав смолы: а) без растворителя, б) в среде бензола, в) в среде толуола.

II. Водная конверсия: 1) в водной среде, 2) в среде 10%-ного водного раствора NaOH, 3) в среде 25%-ного раствора формиата натрия.

После окончания опыта автоклав охлаждали до комнатной температуры и затем отбирали пробу газа. Образовавшийся твердый осадок отделяли от жидкого продукта фильтрованием. Полученные жидкие продукты — катализаты, а также первоначальную смолу разделяли на групповые компоненты методом тонкослойной хроматографии на силикагеле Л 40/100 мкм, элюент *н*-гексан [¹⁶]. Разделенные фракции, как и исходные смеси, анализировали газохроматографически на приборе «Хром-4» с пламенно-ионизационным детектором, газ носитель — аргон. Фракционный состав катализатов определяли методом имитированной дистилляции [¹⁷].

Обсуждение результатов

Более глубокое разложение смолы полукоксования проходит в опытах с катализатором (табл. 1). Наличие органического растворителя и подача газообразного водорода способствуют повышению выхода гидрогенизата; бензол и толуол в применяемых условиях действуют одинаково. Самый низкий выход гидрогенизата при водной конверсии, особенно при наличии щелочи, деструкции способствует также более высокое давление. Во всех опытах образуется очень мало кокса (0,5-1,2%), тогда как при деструкции смолы полукоксования сланцакукерсита выход кокса достигал 17% [15]. Однако опыты с кукерситом проводились в 2-литровом автоклаве и объем растворителя был ниже критического. Смола полукоксования сланца-кукерсита отличается высоким содержанием фенолов (29%) и других кислородных соединений, которые при термической обработке образуют много кокса. Газа образуется относительно много (до 25%), как и при деструкции смолы ИЗ сланца-кукерсита. Количество получаемых жидких продуктов остается приблизительно в одинаковых пределах. Выход катализатов находится в прямой связи с выходом газа: первого тем больше, чем меньше второго. Элементный состав катализатов показывает, что содержание углерода и водорода повышается за счет снижения серы. Самое значительное влияние на снижение серы оказывают катализаторы в опытах без применения растворителей — сера убывает наполовину. Вода оказывает обессеривающее действие только при наличии щелочи. Содержание азота как в смоле полукоксования, так и в продуктах превращения 0,8-1,2%. Содержание фенолов уменьшается незначительно, сохраняются самые стабильные низкокипящие одноатомные фенолы. Такие физико-химические показатели катализатов, как молекулярная масса, плотность, показатель преломления, меняются мало, исключение составляет смола водной конверсии, показатели которой очень сходны с показателями полукоксования.

Групповой состав показывает, что под влиянием катализатора в опытах без растворителя образуется наибольшее количество парафинов (до 30%). Сравнивая со смолой полукоксования, можно видеть, что самые незначительные изменения претерпевает смола под влиянием воды и водного раствора формиата натрия, несмотря на образование большого количества газа. Tabauya 1

1

Выход и характеристика продуктов превращения смолы полукоксования сысольского сланца (время опытов 2 ч, температура 375 °С)

「「「「「「「「」」」」」」」」	A LOW IN		Law restances	песинелоппи		No. of Street, or Stre	R	леаном ренто	bud
	Исходная	Co+M	0/Al2O3	napor company	ZnCl ₂			CARAN AND AND AND AND AND AND AND AND AND A	CHA
Показатель	смола	без раст- ворителя	в бензоле	без раст- ворителя	в бензоле	в толуоле	без реа- гентов	10% NaOH	PCOONa HCOONa
Рабочее давление, МПа	121 ALAN ALAN ALAN ALAN	13	17	17	19	17	27	26	29
Остаточное давление, МПа	12 × 31	3,5	3,2	4,0	4,2 -	4,0	2,3	5,3	4,0
Выход, вес.%: смола кокс газ и потери	na porta apel pad Adreti carcolica na porta	79,0 0,6 20,4	83,9 0,8 15,3	81,0 0,4 18,6	86,0 1,0 13,0	86,0 0,7 13,3	78,3 0,5 21,2	73,5 0,8 25,7	77,0 1,2 21,8
Характеристика смолы: плотность показатель преломления молекулярная масса	1,008 1,562 349	0,910 1,518 331	0,968 1,542 329	0,938 1,547 298	0,986 1,556 288	0,992 1,555 328	1,007 1,564 304	0,981 1,553 343	0,992 1,551 280
Элементный состав смолы, вес.%: углерод водород азот сера кислород	82.2 9.2 4,8 2,6	86,2 10,4 2,0 0,2	85,7 85,7 10,4 2,5 0,3	86,3 10,3 0,8 0,3	84,0 9,9 2,5 2,6	83,6 9,8 3,5 3,5 8	82.7 9,2 3,8 3,3	85.4 9,9 1,2 0,8	83,8 0,9 2,3 3,8
Групповой состав: алифатические углеводоро- ды алкилбензолы	16 4	30 30	19 10	31 8	21 9	22 8	19 5	20 7	20 6
полициклические аромати- ческие углеводороды	30	32	34	35	29	34	30	37	27
малополярные тетероатом- ные соединения высокополярные соединения	16 31 3	20 20	16 19	11	21 17	15 18	14 29	15 20	26 26
фенолы из смолы	,	N	, I	,	~	24	3	2.6	0.3

Анализ данных газа (табл. 2) показывает, что в присутствии воды образуется много двуокиси углерода (опыт с водой и водным раствором формиата натрия). В щелочной среде половину газа составляет метан (основное количество двуокиси углерода растворяется в щелочи), тогда как в присутствии обоих катализаторов образуется много метана, этана и двуокиси углерода. Без растворителя водорода расходуется больше. Наличие значительного количества водорода в газе водной конверсии показывает, что образующийся из воды водород или не обладает особой активностью, или не успевает реагировать. Самое удивительное, что в газе сохраняются такие ненасыщенные углеводороды, как пропилен и этилен. Причина кроется, по-видимому, в том, что в газовой фазе катализатор и углеводород плохо контактируют между собой, отчего полного насыщения двойных связей не происходит.

Таблица 2

"RATE ALL PROT S	antes fi	Водная конверсия							
	Co+M	o/Al_2O_3		ZnCl ₂		B		14 64	
Газовый компонент	без раство- рителя	без в бен- золе золе		в бен- золе	в бен- золе луоле		10% NaOH	25% HCOONa	
Водород Метан Двуокись углерода Окись углерода Этилен Этан Пропилен	34,9 24,5 12,3 2,7 3,8 13,8 1.4	62,0 13,5 8,0 8,4 5,3 1,0	29,8 11,7 17,3 2,8 27,2 3,1	36,0 10,9 19,9 7,7 19,2 1,4	58,5 9,9 16,5 3,3 — 5,5 3,1	8,7 7,0 31,9 3,3 — 23,5 3,6	21,2 50,6 11,1 $-3,36,74,1$	20,1 2,0 62,0 12,3 — 3,1 следы	
Пропан	6,6	1,8	6,8	4,9	3,2	12,3	3,0	0,5	
Сероводород		-	-	-	-	4,6	-	-	
Бутан	In Tak	1915-40	1,3			3,1		_	
Бутилен	DOLLOR	_		-	_	2,0	12-2	-	

Состав газа автоклавной переработки смолы полукоксования сысольского сланца

Бромное число в катализатах остается относительно высоким: если в смоле полукоксования оно составляет 73, то при деструкции снижается в среднем лишь до 50 и только в опытах без растворителя соответствует 39. Высокое бромное число обусловлено гетеросоединениями. Тиофены, а также полициклические ароматические соединения реагируют с бромом, что подтверждается и медленным прохождением реакции бромирования. Судя по данным имитирующей дистилляции, в опытах каталитической деструкции без применения органического растворителя образуется самое большое количество легкокипящих фракций: до 200° выкипает 16%, во всех других опытах эта цифра колеблется от 2 до 7%, а в исходной смоле было 3%; до 400° из исходной смолы выкипает 34%, из смол, полученных в опытах без органического растворителя, а также в среде водного раствора щелочи, — 59%, из смол, полученных в остальных опытах, — около 45%.

Газохроматографический анализ показал, что в катализатах присутствуют как алифатические, так и ароматические соединения. Основными компонентами хроматограмм суммарных смол являются *н*-парафины. Хроматограммы алифатических углеводородов исходной и гидрированных смол похожи, они представлены в основном *н*-парафинами от C_{13} до C_{29} и изопреноидами от iC_{18} до iC_{21} (рис. 1), высокую концентрацию имеют пристан (iC_{19}) и фитан (iC_{20}). Коэффициент нечетности (КН) [¹⁸], т.е. отношение суммы нечетных парафинов к сумме четных, в области парафинов C_{15} — C_{20} немного превышает единицу (1,07—1,13), а среди C_{21} — C_{29} превалируют четные гомологи. В случае геолипидов это явление встречается редко и считается признаком генезиса отложений в сильно восстановительных условиях. В процессе

условиях. В процессе деструкции смолы полукоксования количество *i*C₂₀ уменьшается, а соотношение *i*C₁₉/*i*C₂₀ увеличивается.

Среди полициклических ароматических соединений идентифицированы нафталин, α- и β-метилнафталины, дифенил, диметилнафталин, фенантрен и др. В смоле полукоксования концентрация нафталина низкая, но в процессе разложения в присутствии ZnCl₂ она возрастает до концентрации α- и β-метилнафталинов.

Нейтральные кислородные соединения представлены в смоле полукоксования сысольского сланца гомологическим рядом н-алканонов от С10 до С28, присутствуют кетоны с карбонильной группой в середине цепи и метилкетоны (алканоны-2), превалируют нечетные алканоны от С17 до С23, концентрация первой группы алканонов выше второй. После обработки в водной

Рис. 1. Хроматограмма алифатических углеводородов смолы конверсии в 10%-ном растворе щелочи. Пики 13— 29 соответствуют числу атомов углерода в молекуле *н*-парафинов; *i*18—*i*21 изопреноидные структуры. Колонка: 4% силиконового эластомера Е 301 на хроматоне N-AW-DMCS, 3,7 м × 3 мм. среде, а также в органических растворителях в присутствии $ZnCl_2$ алканоны сохраняются. Однако в отличие от продуктов обработки смолы полукоксования сланца-кукерсита, где присутствуют лишь несимметричные метилкетоны [¹⁵], в катализатах смолы полукоксования сысольского сланца доминируют от C_{11} до C_{19} несимметричные метилкетоны, а начиная с C_{20} до C_{28} симметричные (рис. 2). В отличие от парафинов кетоны C_{13} — C_{21} (особенно 2-алканоны) имеют самые высокие «нечетности», а с дальнейшим удлинением цепи повышается концентрация четных кетонов C_{24} и C_{26} с карбонильной группой в середине цепи. Подобное явление было установлено также у кетонов битумоида кукерсита [¹⁹]. По характеру КН наблюдается удовлетворительная корреляция между парафинами и кетонами.

Рис. 2. Хроматограмма нейтральных кислородных соединений смолы конверсии в 10%-ном растворе щелочи. Двойные пики соответствуют *н*-алкилкетонам, первый пик — карбонильная группа находится в середине углеводородной цепи, второй пик — 2-алканоны; цифры показывают количество атомов углерода в молекуле. Характеристику колонки см. в подписи к рис. 1.

Выделенные из смол фенолы представлены простым фенолом, крезолами и ксиленолами. Их состав при обработке существенно не изменяется.

Таблица 3

Характеристика смол гидрогенизации и конверсии смолы полукоксования сысольского сланца по оптическим плотностям ИК-спектров [19]

Maria Maria	114 1993	Гидрогенизация						Водная конверсия			
Ллина	E	Co+M	O/Al_2O_3	AWWAR	ZnCl ₂	142.4		11/18/	63		
волны, см ⁻¹	Исходна: смола	без раство- рителя	в бен- золе	без раство- рителя	в бен- золе	в то- луоле	без реагенто	10% NaOH	25% HCOON		
720-730 745 815 880 1380 1600 1700 2930 2960	0,10 0,17 0,18 0,14 0,71 0,48 0,67 1,63 1,30	0,19 0,56 0,49 0,28 0,73 0,49 0,11 1,08 1,06	0,07 0,19 0,18 0,04 0,60 0,34 0,15 1,52 1,37	0,51 	0,38 0,49 0,51 	0,30 0,49 0,48 	0,12 0,34 	0,23 0,47 0,45 	0,29 0,45 0,48 0,27 0,81 0,54 0,53 1,10		
3030 3050 3400 2930/2960	0,31 0,26 0,21 1,25	1,00 0,54 0,46 0,22 1,02	0,51 0,43 0,27 1,11	0,62 0,53 0,28 1,01	0,58 0,50 0,40 1,01	0,62 0,55 0,43 1,01	0,49 0,45 0,39 1,04	0,56 0,50 0,33 1,05	0,65 0,55 0,44 1,01		

Рис. 3. ИК-спектры смол гидрогенизации и конверсии: 1 — ясходная смола, 2 — конверсия в водной среде без реагентов, 3 — конверсия в 10%-ном растворе щелочи, 4 — смола гидрогенизации с кобальтмолибденовым катализатором, 5 — она же с хлористым цинком.

Характер превращения смолы в автоклаве изучали также спектральными методами. По ИК-спектрам видно (табл. 3, рис. 3), что в катализатах изменяется состав функциональных групп, а именно: повышается доля С—Н-групп ароматического ядра, но снижается доля олефиновых —СН-групп и метиловых групп. Соотношение ароматики и алифатики (3050/2930) увеличивается; в ¹Н-ЯМР-спектрах этого не наблюдается. Поглощение при 1600 см⁻¹, соответствующее валентному колебанию бензольного кольца, увеличивается в катализатах, тогда как поглощение метиловой группы при 1380 см⁻¹ практически не меняется. Поглощение карбонильной группы (1700 см⁻¹) уменьшается значительно в катализатах, особенно в опытах с катализаторами Co+Mo/Al₂O₃ и ZnCl₂ без растворителя. Поглощение —OH-групп увеличивается почти вдвое в продуктах водной конверсии и в катализатах (ZnCl₂ и растворитель); наверно, в этих опытах происходит расщепление фенольных эфиров. В опытах с Mo+Co/Al₂O₃-катализатором поглощение при 3400 см⁻¹ практически не меняется. В катализатах увеличивается в алентное колебание —CH-групп в ароматизатором поглощение при 3400 см⁻¹ практически не меняется. В катализатах

Судя по ¹Н-ЯМР-спектрам (рис. 4), водород распределяется в продуктах деструкции следующим образом (табл. 4): около 30% приходится на метиловый водород в длинноцепочечных алканах, расположенных в у-положении к ароматическому кольцу (1,0—1,6 м. д.), около 20% находится в метиленовых группах, связанных с ароматическим

Таблица 4

The state of the state of the	arres for	P. R. C. C.		Гидр	огениза	ция		Водная конверсия		
and the second second			Co+Mo	O/Al_2O_3		ZnCl ₂	1 A 1			
Характер протонов	Химические сдвиги, м. д.	Исходная смола	без раст- ворителя	в бензоле	без раст- ворителя	в бензоле	в то- луоле	без реа- гентов	10% NaOH	25% HCOONa
Концевые СН ₃ -	0,5—1,0	11,1	13,5	14,6	14,7	15,0	13,6	13,3	10,8	12,4
 —СН₂-прямо- линейных це- пей, β-СН₂- и β-СН₃ к ароматиче- скому ялру 	10-16	29.3	33.5	33.3	34.0	30.0	30.1	31.1	33.6	32.9
Нафтеновый, β к аромати- ческому ядру	1,6-1,9	8,3	7,0	8,4	7.3	7.6	8,2	8,1	7,4	8,8
Метиловый, α к аромати- ческому ядру	1,9—2,3	9,8	7,2	8,2	7,8	8,9	8,7	8,9	8,2	9,5
Метиленовый, α к аромати- ческому ядру	2,3-4,0	22,6	21.7	20.6	20.3	21.1	21.5	23.3	24.3	21.0
Олефиновый	4,0-6,0	4.4	3.0	4.1	2.5	4.1	3.9	3,2	2,4	3,0
Бензольный	6,0-7,2	5,5	4,0	3,6	3.6	4.1	5,3	4,1	3,7	3,5
Нафталиновый	7,2-7,8	5,9	6,3	4,8	.6,4	6,3	6,0	5,0	6,2	6,0
Триароматиче- ский	7,8-8,3	3,1	3,9	2,4	3,5	2,8	2,7	3,0	3,3	2,8

Распределение водорода в продуктах превращения смолы полукоксования сысольского сланца на основе ¹Н-ЯМР-спектров, % [²⁰]

15

Рис. 4. ¹Н-ЯМР-спектры смол гидрогенизации и конверсии. Обозначения см. в подписи к рис. 3.

ядром в α-положении (2,3—4,0 м. д.), около 15% принадлежит группам одно-, двух- и трехъядерной ароматики (6,0—8,3 м. д.).

Данные ИК-спектров и группового состава показывают, что исходная смола полукоксования претерпевает в ходе термической деструкции более глубокие изменения, чем это отражают ¹Н-ЯМР-спектры. Причина, по всей вероятности, в том, что после элиминации функциональных групп основные углеводородные скелеты соединений сохраняются, как и не протекают реакции гидрирования и дегидрирования. ИК-спектры отражают в основном состав функциональных групп веществ, который при автоклавной переработке существенно изменяется, и поэтому эти спектры поставляют больше данных о превращениях смолы в автоклаве.

Выводы

1. Автоклавная переработка смолы полукоксования сысольского сланца сопровождается значительными потерями за счет образования газа (до 25%), снижение содержания серы при этом недостаточно; для более полного удаления серы следует повысить давление водорода и температуру.

2. В присутствии воды образуется очень много газа, реакция термического разложения проходит интенсивнее, чем при каталитической гидрогенизации, при наличии щелочи основные потери вещества связаны с образованием метана. 3. Несмотря на разное действие обоих катализаторов — смеси окиси кобальта и молибдена и хлористого цинка, полученные катализаты имеют близкий состав. В среде органических растворителей реакция проходит менее глубоко, так как контакт между катализатором и веществом хуже, чем без растворителя.

4. При гидрогенизации основные углеводородные скелеты соединений сохраняются, основная реакция — элиминирование функциональных групп.

ЛИТЕРАТУРА

- Наппа Л., Клесмент И., Винк Н. Гидрогенизация и конверсия горючего сланца Чаганского месторождения. Изв. АН ЭССР. Хим., 1984, 33, № 2, 87—94.
 Салусте С., Клесмент И., Кягу К. Исследование горючих сланцев Сысольского месторождения Коми АССР. 3. Групповой состав смолы полукоксования. —

- Салусте С., Клесмент Н., Клед К. Песледование торючих сланцев Сысольского месторождения Коми АССР. 3. Групповой состав смолы полукоксования. Горючие сланцы, в печати.
 Mondragon, F., Itoh, H., Ouchi, K. Coal liquefaction by in situ hydrogen generation. 1. Zinc-water-coal reaction. Fuel, 1984, 63, N 7, 968—972.
 Ellis, C. Hydrogenation of Organic Substances. London, 1931, 502.
 Фридман Г. Е., Переслени И. М. Термические разложения горючих сланцев в присутствии воды под давлением. Тр. ИГИ, 1962, 17, 60—75.
 Klesment, I., Nappa, L. Investigation of the structure of Estonian oil shale kukersite by conversion in aqueous suspension. Fuel, 1980, 59, N 2, 117—122.
 Ouchi, K., Hosokawa, S., Maeda, K., Itoh, H. Coal hydrogenolysis in the presence of NaOH. Fuel, 1980, 59, N 7, 627—630.
 Maddocks, R., Gribson, I., Williams, D. Supercritical extraction of coal. Chem. Eng. Progr., 1979, N 6, 49—55.
 Кричко А., Титова Т. Гидрогенизация угля под невысоким давлением водорода. Хим. тв. топл., 1980, № 6, 67—82.
 Sebor, G., Wesser, O., Hájek, M. Hydrierung der Erdölasphaltene. Chem. Technik, 1981, 13, Hett 7, 362—365.
 Sato, Y., Imuta, K., Yamakawa, T. Nonsolvent coal hydrogenation at short contact time. Fuel, 1979, 58, N 5, 322—326.
 Ida, T., Nomura, M., Natsuji, Y., Kikkawa, S. Hydrogenation of Japanese coals catalysed by metal halides. Fuel, 1979, 58, N 5, 361—365.
 Yokoyama, S., Bobily, D., Wiser, W. Chemical structure of heavy oil from coal hydrogenation. 1. Hydrogenation with zinc chloride catalyst. Fuel, 1983, 62, N 1, 5—10. 62, N 1, 5-10.

- 62, N 1, 5—10.
 14. Mobley, D., Bell, A. Effects of zinc chloride on the cleavage of ether structures present in coal. Fuel, 1979, 58, N 9, 661—666.
 15. Klesment, I. Application of chromatographic methods in biogeochemical investigations. J. Chromatogr., 1974, 91, N 2, 705—713.
 16. Наппа Л., Клесмент И., Винк Н. Исследование тяжелой смолы полукоксования сланца-кукерсита. 3. Гидрогенизация и конверсия. Изв. АН ЭССР. Хим., 1983, 32, № 3, 208—214.
 17. Bray, E., Evans, E. Distribution on n-paraffins as a clue to recognition of source beds. Geochim et Cosmochim Acta 1961, 22, N 1, 2—9.
- beds. Geochim. et Cosmochim. Acta, 1961, 22, N 1, 2-9.
- Пайс Р., Клесмент И., Побуль Л. Углеводороды и кислородные соединения в битумоиде сланца-кукерсита. Изв. АН ЭССР. Хим., 1979, 28, № 3, 182—190.
- 19. Глебовская Е. А. Применение инфракрасной спектрометрии в нефтяной геохимии.
- Л., 1971. 20. Netzel, D., Miknis, F. N.m.r. study of US Eastern and Western shale oils produced by pyrolysis and hydropyrolysis. - Fuel, 1982, 61, N 11, 1101-1109.

Институт химии Академии наук Эстонской ССР Поступила в редакцию 11/I 1985

Lia NAPPA, I. KLESMENT, Natalja VINK, H. LUIK

KOMI ANSV SÖSSOLI LEIUKOHA PÖLEVKIVI UURIMINE

5. Poolkoksistusõli autoklaavtöötlus

Sõssoli põlevkivi poolkoksistusõli hüdrogeeniti ja konverteeriti rõhu all autoklaavis temperatuuril 375 °C kahe tunni kestel benseeni, tolueeni ja vee keskkonnas. Kasutati koobalt-molübdeen- ja tsinkkloriidkatalüsaatorit, veega konverteerimisel naatriumhüdroksiidi. Vaatamata katalüsaatorite erinevale mõjule olid tekkinud vedelproduktid lähedase koostisega. Katalüsaatides vähenes väävli sisaldus ainult 2%-ni. Poolkoksistusõli termiline töötlus on seotud kadudega (kuni 25%) gaasi tekke tõttu, eriti vee manulusel. Hüdrogeenimisel toimub peamiselt funktsionaalsete rühmade elimineerimine, mistõttu ühendite põhilised süsinikskeletid säilivad.

Lia NAPPA, I. KLESMENT, Natalya VINK, H. LUIK

INVESTIGATION OF SYSSOLA OIL SHALE FROM KOMI ASSR

5. Thermal decomposition of semi-coking oil in autoclave

The semi-coking oil of Syssola oil shale was hydrogenated and converted in autoclave under pressure at the temperature of 375° during 2 hours, using as solvents benzene, toluene and water. The catalysts used for the decomposition were cobalt molybdate and zinc chloride, and for conversion — sodium hydroxide. In spite of the different influence of catalysts, the liquid products obtained had a similar composition. The sulphur content decreased after autoclave treatment only to 2%. The thermal decomposition — and particularly the conversion with water — is accompanied by relatively high losses (25%) as a result of gas formation. By hydrogenation mainly the elimination of functional groups takes place, and so the hydrocarbon skeletons are retained.