УДК 547.466: 541.623

А. КУУСК, С. ФАЙНГОЛЬД

ИССЛЕДОВАНИЕ ПРОТОЛИТИЧЕСКОЙ ТАУТОМЕРИЗАЦИИ ОРГАНИЧЕСКИХ АМФОЛИТОВ

1. РАСЧЕТ КОНЦЕНТРАЦИИ ИОННЫХ ФОРМ И ИЗОЭЛЕКТРИЧЕСКИХ ДИАПАЗОНОВ АМИНОКИСЛОТ НА ОСНОВЕ МАКРОКОНСТАНТ КИСЛОТНОЙ ДИССОЦИАЦИИ

(Представил О. Эйзен)

В [1] выведены формулы для расчета количеств любых ионных форм амфолита исходя из микроконстант диссоциации K_A , K_B , K_C , K_D и из константы таутомерного равновесия K_T [2].

Нами на основе константы K_T и макроконстант диссоциации K_1 , K_2 ,

описываемых уравнениями *

$$K_T = [A^{\pm}]/[A], \tag{1}$$

$$K_1 = (([A] + [A^{\pm}]) \cdot [H^{+}])/[A^{+}];$$
 (2)

$$K_2 = [A^-] \cdot [H^+]/([A] + [A^{\pm}]),$$
 (3)

где A^+ , A^- , A^\pm и A^- катионная, анионная, цвиттерионная и молекулярная формы амфолита соответственно, H^+ — протон, и уравнения материального баланса

$$[A^{+}] + [A^{\pm}] + [A^{-}] + [A] = 100$$
 (4)

выведены формулы для расчета изоэлектрического диапазона, а также содержания всех ионных форм амфолита при любой величине рН среды. Так, для вычисления концентрации цвиттерионной формы амфолита

(моль %) при определенном значении рН среды получим формулу

$$[A^{\pm}] = \frac{100}{(1/K_T + 1)(1 + [H^{\pm}]/K_1 + K_2/[H^{\pm}])}.$$
 (5)

В изоэлектрической точке $[A^-]=[A^+]$, и из соотношений (2) и (3) выводим $[^3]$

 $[H+]^2 = K_1 \cdot K_2 \tag{6}$

или

$$pH_{H30} = -lg [H^+] = (pK_1 + pK_2)/2,$$
 (7)

где [H+] — концентрация ионов водорода в изоэлектрической точке. Подставляя значение [H+] из уравнения (6) в уравнение (5), имеем

$$[A^{\pm}]_{\text{\tiny MARC}} = \frac{100}{(1/K_T + 1)(1 + 2\sqrt{K_2/K_1})},$$
 (8)

^{*} Коэффициенты активности приняты равными 1.

откуда можно вычислить концентрацию цвиттериона в изоэлектрической точке, где его содержание максимально. Следовательно, содержание цвиттерионной формы в изоэлектрической точке зависит от константы K_T и от соотношения констант K_2 и K_1 .

Известно [3], что в случае α - и других простых аминокислот $K_T \to \infty$ и ионизация протекает преимущественно по пути $A^+ \rightleftharpoons A^\pm \rightleftharpoons A^-$, в результате чего константы K_A и K_C [1] могут быть приравнены к K_1 и K_2

соответственно.

Из уравнений (2), (3) и уравнения материального баланса

$$[A^{+}] + [A^{\pm}] + [A^{-}] = 100$$
 (9)

получаем соотношение

$$[A^{\pm}]_{K_T \to \infty} = \frac{100}{1 + [H^{+}]/K_1 + K_2/[H^{+}]}, \tag{10}$$

жоторое позволяет вычислить содержание цвиттериона для α- и других простых аминокислот при любых pH среды. Его максимальное содержание в изоэлектрической точке для этих соединений составляет

$$[A^{\pm}]_{\substack{\text{MARC} \\ K_T \to \infty}} = 100/(1+2\sqrt{K_2/K_1}). \tag{11}$$

Последнее уравнение сходно с уравнением, выведенным в [3] для вычисления суммарного количества цвиттерионной и недиссоциирован-

ной форм амфолита в изоэлектрической точке.

Рассмотрим другой экстремальный случай. Представителями соединений, где $K_T \to 0$ и ионизация протекает по пути $A^+ \rightleftharpoons A \rightleftharpoons A^-$, служат аминофенолы. Аналогично ранее полученным уравнениям посредством уравнения материального баланса

$$[A^+] + [A] + [A^-] = 100$$
 (12)

можем вывести уравнение для вычисления количества неионной формы амфолита для этого типа соединений в зависимости от кислотности среды и в изоэлектрической точке. Эти уравнения одинаковы с уравнениями (10) и (11), так как в данном случае константы K_B и K_D равны константам K_1 и K_2 соответственно.

Для многих амфолитов формула (7) не имеет большого практического значения, так как у этих соединений изоэлектрическая точка является центром широкой зоны рН, где амфолит выступает практически полностью в цвиттерионной форме. Изоэлектрический диапазон определяют [3] как разность рН между двумя точками на противоположных ветвях кривой зависимости [A^{\pm}] от рН, где [A^{\pm}] имеет одинаковое значение.

Обозначим соотношение количества цвиттериона при определенном значении рН (уравнение (5)) к его максимальному количеству в изоэлектрической точке (уравнение (8)) через M, равную

$$M = [A^{\pm}]/[A^{\pm}]_{\text{Makc}}.$$
 (13)

В изоэлектрическом диапазоне величина M (в мольных долях; в таблице моль % = мольной доле \cdot 100) имеет постоянное или близкое к постоянному значение. Задавая M согласно требованиям эксперимента, можно найти величину диапазона Δ рH = р $H_2 -$ р H_1 . В этом случае M может иметь не только вышеуказанное значение, но и любые значения от 0 до 100%.

Подставляя уравнения (5) и (8) в уравнение (13), имеем

	Даннь	ie [4-8]	риче-			
Аминокислота	pK_1	pK_2	Изоэлектриче- ская точка	0,1	1,0	
1	2	3	4	5	6	-
Глицин NH ₂ CH ₂ COOH	2,35**	9,778**	6,064	13,43	11,42	
Саркозин СН₃NHCH₂СООН	2,350	10,200	6,275	13,85	11,84	
N-Этилглицин CH₃CH₂NHCH₂COOH	2,340	10,230	6,285	13,89	11,88	-
<i>N</i> -Метилсаркозин (CH ₃)₂NCH₂COOH	2,150	9,860	6,005	13,71	11,70	
DL-Аланин CH ₃ CH(NH ₂)COOH	2,348**	9,866**	6,107	13,52	11,51	
2-Метилаланин CH ₃ (CH ₃) C (NH ₃) COOH	2,357	10,206	6,281	13,85	11,84	
3-Трифторметилаланин F ₃ CCH ₂ CH(NH ₂)COOH	1,600	8,170	4,885	12,57	10,56	
<i>DL</i> -Фенилаланин C ₆ H ₅ CH ₂ CH(NH ₂)COOH	2,58**	9,24**	5,91	12,66	10,65	-
м-Хлорфенилаланин м-CIC $_6$ H $_4$ CH $_2$ CH (NH $_2$) COOH	2,170	8,910	5,540	12,74	_10,73	
<i>n</i> -Хлорфенилаланин <i>n</i> -ClC ₆ H ₄ CH ₂ CH (NH ₂) COOH	2,080	8,960	5,520	12,88	10,87	
<i>o</i> -Фторфенилаланин <i>o</i> -FC ₆ H ₄ CH ₂ CH (NH ₂) COOH	2,120	9,010	5,565	12,89	10,88	
м-Фторфенилаланин м-FC ₆ H ₄ CH ₂ CH(NH ₂)COOH	2,100	8,980	5,540	12,88	10,87	-
<i>n</i> -Фторфенилаланин <i>n</i> -FC ₆ H ₄ CH ₂ CH (NH ₂) COOH	2,130	9,050	5,590	12,92	10,91	-
3-Метилаланин CH ₃ CH ₂ CH (NH ₂) COOH	2,284**	9,831**	6,058	13,55	11,54	-
DL-Серин HOCH₂CH(NH₂)COOH	2,21**	9,15**	5,68	12,94	10,93	-
rac-Серин HOCH ₂ CH(NH ₂)COOH	2,186	9,208	5,697	13,02	11,01	
4-Амино-4-карбоксиэтилбутанат CH ₃ CH ₂ OOCCH ₂ CH ₂ CH (NH ₂) COOH	2,148	9,190	5,669	13,04	11,03	
Норвалин CH ₃ (CH ₂) ₂ CH (NH ₂) COOH	2,318**	9,806**	6,062	13,49	11,48	
<i>DL</i> -Валин (CH ₃) ₂ CHCH(NH ₂) COOH	2,286**	9,719**	6,002	13,43	11,43	-
L-Валин (CH ₃) ₂ CHCH(NH ₂)COOH	2,480	9,710	6,095	13,23	11,22	-
3-Гидроксивалин (CH ₃) ₂ C(OH)CH(NH ₂)COOH	2,610	9,710	6,160	13,10	11,09	
Норлейцин CH ₃ (CH ₂) ₃ CH (NH ₂) COOH	2,334**	9,833**	6,084	13,50	11,49	
<i>DL</i> -Лейцин (CH ₃) ₂ CHCH ₂ CH(NH ₂)COOH	2,328**	9,744**	6,036	13,42	11,41	-
<i>DL</i> -Изолейцин CH ₃ CH ₂ CH(CH ₃)CH(NH ₂)COOH	2,318**	9,758 **	6,038	13,44	11,43	1

ΔрН при содержании цвиттериона, моль %

										10			
	10,0	20,0	30,0	40,0	50,0	60,0	70,0	80,0	90,0	99,0	99,9	99,99	99,999
	7	8	9	10	11	12	13	14	15	16	17	18	19
i	9,34	8,63	8,16	7,78	7,43	7,08	6,69	6,23	5,52	3,47	1,70	0,61	0,20
	9,76	9,05	8,59	8,20	7,85	7,50	7,12	6,65	5,94	3,88	2,03	0,77	0,25
	9,80	9,09	8,63	8,24	7,89	7,54	7,16	6,69	5,98	3,92	2,06	0,79	0,26
	9,62	8,91	8,45	8,06	7,71	7,36	6,98	6,51	5,80	3,74	1,91	0,72	0,23
i	9,43	8,72	8,25	7,87	7,52	7,17	6,78	6,31	5,61	3,56	1,76	0,64	0,20
i	9,76	9,05	8.59	8,20	7,85	7,50	7,11	6,65	5,94	3,88	2,03	0,77	0,25
ı	8,48	7,78	7,31	6,92	6,57	6,22	5,84	5,37	4,67	2,66	1,13	0,38	0,12
ı	8,57	7,87	7,40	7,01	6,66	6,31	5,93	5,46	4,76	2,75	1,18	0,40	0,12
	8,65	7,95	7,48	7,09	6,74	6,39	6,01	5,54	4,84	2,82	1,23	0,42	0,13
i	8,79	8,09	7,62	7,23	6,88	6,53	6,15	5,68	4,98	2,95	1,31	0,45	0,14
i	8,80	8,10	7,63	7,24	6,89	6,54	6,16	5,69	4,99	2,96	1,32	0,45	0,15
ı	8,79	8,09	7,62	7,23	6,88	6,53	6,15	6,68	4,98	2,95	1,31	0,45	0,14
	8,83	8,13	7,66	7,27	6,92	6,57	6,19	5,72	5,02	2,99	1,34	0,46	0,15
ı	9,46	8,75	8,28	7,90	7,55	7,20	6,81	6,34	5,64	3,58	1,79	0,65	0,21
ı	8,85	8,15	7,68	7,30	6,94	6,59	6,21	5,74	5,04	3,00	1,35	0,47	0,14
ı	8,93	8,23	7,76	7,38	7,02	6,67	6,29	5,82	5,12	3,08	1,41	0,49	0,16
l	8,95	8,25	7,78	7,40	7,04	6,69	6,31	5,84	5,14	3,10	1,42	0,49	0,16
	9,40	8,69	8,22	7,84	7,49	7,14	6,75	6,29	5,58	3,53	1,74	0,63	0,20
ı	9,34	8,64	8,17	7,79	7,43	7,08	6,70	6,23	5,53	3,47	1,70	0,61	0,19
ı	9,14	8,45	7,97	7,58	7,23	6,88	6,50	6,03	5,33	3,28	1,55	0,55	0,18
ı	9,01	8,31	7,84	7,45	7,10	6,75	6,37	5,90	5,20	3,16	1,46	0,51	0,16
-	9,41	8,70	8,24	7,85	7,50	7,15	6,76	6,30	5,59	3,54	1,75	0,64	0,21
	9,32	8,62	8,15	7,76	7,42	7,06	6,68	6,21	5,51	3,46	1,69	0,61	0,19
	9,35	8,64	8,18	7,79	7,44	7,09	6,71	6,24	5,53	3,48	1,70	0,61	0,19
	14/4/2	333				1	1.	1	1	1 2000	0.000	MAN I	13000

						7
1	2	3	4	5	6	
4-Трифторметилнорвалин F ₃ CCH(CH ₃)CH ₂ CH(NH ₂)COOH	2,045	8,942	5,494	12,90	10,89	
N-Этилаланин CH₃CH₂NHCH(CH₃) COOH	2,220	10,220	6,220	14,00	11,99	
L-N-Метилвалин (CH ₃) ₂ CHCH(NHCH ₃)COOH	2,280	9,930	6,105	13,65	11,64	
<i>L-N</i> -Бензилаланин CH ₃ CH(NHCH ₂ C ₆ H ₅) COOH	1,900	8,990	5,445	13,09	11,08	1
<i>L-N,N</i> -Диметилаланин CH ₃ CH(N (CH ₃) ₂) COOH	2,150	10,050	6,100	13,90	11,89	-
<i>L-N,N-</i> Диметилвалин (CH ₃) ₂ CHCH (N (CH ₃) ₂) COOH	1,860	9,520	5,690	13,66	11,65	1
<i>L-N</i> -Бензил- <i>N</i> -метилаланин CH ₃ CH (N (CH ₃) CH ₂ C ₆ H ₅) COOH	2,060	9,400	5,730	13,34	11,33	1
<i>L-N</i> -Бензил- <i>N</i> -метилвалин (CH ₃) ₂ CHCH (N (CH ₃) CH ₂ C ₆ H ₅) COOH	2,150	8,740	5,445	12,59	10,58	
β-Аланин NH ₂ CH ₂ COOH	3,550	10,360	6,955	12,81	10,80	
N-Метил-β-аланин CH₃NHCH₂CH₂COOH	2,240	10,020	6,130	13,78	11,77	11
2-Гидрокси-β-аланин NH ₂ CH ₂ CH (OH) COOH	2,780	9,270	6,025	12,49	10,48	1
4-Аминобутановая кислота NH ₂ (CH ₂) ₃ COOH	4,040	10,620	7,330	12,58	10,57	
4-Аминопентановая кислота NH ₂ CH (CH ₃) (CH ₂) ₂ COOH	4,020	10,400	7,210	12,38	10,37	
5-Аминопентановая кислота NH ₂ (CH ₂) ₄ COOH	4,230	10,850	7,540	12,62	10,61	1
6-Аминогексановая кислота NH ₂ (CH ₂) ₅ COOH	4,370	10,940	7,655	12,57	10,56	
7-Аминогептановая кислота NH ₂ (CH ₂) ₆ COOH	4,450	10,970	7,710	12,52	10,51	-
8-Аминооктановая кислота NH ₂ (CH ₂) ₇ COOH	4,520	10,970	7,745	12,45	10,44	
9-Аминононановая кислота NH ₂ (CH ₂) ₈ COOH	4,540	11,020	7,780	12,48	10,47	
10-Аминодекановая кислота NH ₂ (CH ₂) ₉ COOH	4,580	11,010	7,795	12,43	10,42	-
11-Аминоундекановая кислота NH ₂ (CH ₂) ₁₀ COOH	4,630	11,070	7,850	12,44	10,43	-
L-Пролин NH (CH ₂) ₃ CHCOOH	2,00**	10,60**	6,30	14,60	12,59	
Окси- <i>L</i> -Пролин NHCH ₂ CH(OH) CH ₂ CHCOOH	1,92**	9,73**	5,82	13,81	11,80	-
L-N-Метилпролин CH ₃ N (CH ₂) ₃ CHCOOH	1,750	10,360	6,055	14,61	12,60	
<i>L-N</i> -Бензилпролин C ₆ H ₅ CH ₂ N (CH ₂) ₃ CHCOOH	2,000	9,900	5,950	13,90	11,89	1
L-N-Бензилгидроксипролин C ₆ H ₅ CH ₂ NCH ₂ CH (OH) CH ₂ CHCOOH	1,790	8,780	5,285	12,99	10,98	-
Глицилглицин NH ₂ CH ₂ CONHCH ₂ COOH	3,140	8,230	5,685	11,09	9,09	

7	8	9	10	11	12	13	14	15	16	17	18	19
8,81	8,10	7,63	7,25	6,90	6,55	6,16	5,70	5,00	2,97	1,33	0,46	0,15
9,91	9,20	8,74	8,35	8,00	7,65	7,26	6,80	6,09	4,03	2,15	0,84	0,27
9,56	8,85	8,39	8,00	7,65	7,30	6,92	6,45	5,74	3,68	1,87	0,69	0,22
9,00	8,30	7,83	7,44	7,09	6,74	6,36	5,89	5,19	3,15	1,45	0,51	0,16
9,81	9,10	8,64	8,25	7,90	7,55	7,17	6,70	5,99	3,93	2,07	0,79	0,26
9,57	8,86	8,40	8,01	7,66	7,31	6,93	6,46	5,75	3,69	1,87	0,70	0,23
9,25	8,55	8,08	7,69	7,34	6,99	6,61	6,14	5,44	3,39	1,63	0,58	0,19
8,50	7,80	7,33	6,94	6,59	6,24	5,86	5,39	4,69	2,68	1,14	0,38	0,12
8,72	8,02	7,55	7,16	6,81	6,46	6,08	5,61	4,91	2,88	1,27	0,43	0,14
9,69	8,98	8,52	8,13	7,78	7,43	7,05	6,58	5,87	3,81	1,97	0,74	0,24
8,40	7,70	7,23	6,84	6,49	6,14	5,76	5,29	4,59	2,59	1,08	0,36	0,12
8,49	7,79	7,32	6,93	6,58	6,23	5,85	5,38	4,68	2,67	1,13	0,38	0,12
8,29	7,59	7,12	6,73	6,38	6,03	5,65	5,18	4,48	2,49	1,02	0,34	0,11
8,53	7,83	7,36	6,97	6,62	6,27	5,89	5,42	4,72	2,71	1,16	0,39	0,12
8,48	7,78	7,31	6,92	6,57	6,22	5,84	5,37	4,67	2,66	1,13	0,38	0,12
8,43	7,73	7,26	6,87	6,52	6,17	5,79	5,32	4,62	2,62	1,10	0,37	0,12
8,36	7,66	7,19	6,80	6,45	6,10	5,72	5,25	4,55	2,55	1,06	0,35	0,11
8,39	7,69	7,22	6,83	6,48	6,13	5,75	5,28	4,58	2,58	1,08	0,36	0,11
8,34	7,64	7,17	6,78	6,43	6,08	5,70	5,23	4,53	2,54	1,05	0,35	0,11
8,35	7,65	7,18	6,79	6,44	6,09	5,71	5,24	4,54	2,55	1,05	0,35	0,11
10,51	9,80	9,34	8,95	8,60	8,25	7,86	7,40	6,69	4,62	2,68	1,14	0,38
9,72	9,01	8,55	8,16	7,81	7,46	7,07	6,61	5,90	3,84	1,99	0,75	0,23
10,52	9,81	9,35	8,96	8,61	8,26	7,87	7,41	6,70	4,63	2,69	1,15	0,39
9,81	9,10	8,64	8,25	7,90	7,55	7,17	6,70	5,99	3,93	2,07	0,79	0,26
8,90	8,20	7,73	7,34	6,99	6,64	6,26	5,79	5,09	3,05	1,39	0,48	0,15
7,00	6,30	5,83	5,45	5,10	4,75	4,37	3,91	3,23	1,46	0,51	0,16	0,05

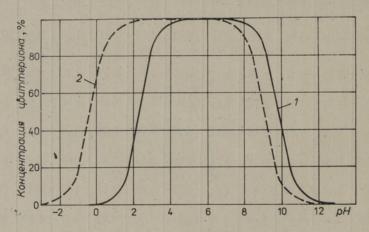
1	2	3	4	5	6	-
Диглицилглицин NH ₂ (CH ₂ CONH) ₂ CH ₂ COOH	3,260	7,910	5,585	10,66	8,65	
Триглицилглицин NH ₂ (CH ₂ CONH) ₃ CH ₂ COOH	3,050	7,750	5,400	10,71	8,70	
Тетраглицилглицин NH ₂ (CH ₂ CONH) ₄ CH ₂ COOH	3,050	7,700	5,375	10,66	8,65	
Пентаглицилглицин NH ₂ (CH ₂ CONH) ₅ CH ₂ COOH	3,050	7,600	5,325	10,56	8,55	
Аланилглицин NH ₂ CH(CH ₃)CONHCH ₂ COOH	3,110	8,180	5,645	11,07	9,07	-
Глицилаланин NH ₂ CH ₂ CONHCH(CH ₃)COOH	3,153	8,250	5,702	11,10	9,09	
LD, DL-Аланилаланин NH ₂ CH(CH ₃) CONHCH(CH ₃) COOH	3,120	8,300	5,710	11,18	9,18	-
LL,DD-Аланилаланин NH ₂ CH(CH ₃) CONHCH(CH ₃) COOH	3,300	8,140	5,720	10,85	8,84	1
3-Метилаланил-3-метилаланин NH ₂ CH (CH ₂ CH ₃) - -CONHCH (CH ₂ CH ₃) COOH	3,040	8,390	5,715	11,35	9,35	-
Саркозилглицин СН ₃ NHCH ₂ CONHCH ₂ COOH	3,100	8,510	5,805	11,41	9,41	
Глицилсаркозин NH ₂ CH ₂ CON (CH ₃) CH ₂ COOH	2,830	8,540	5,685	11,71	9,70	
Фенилаланилглицин NH ₂ CH(CH ₂ C ₆ H ₅)CONHCH ₂ COOH	3,100	7,710	5,405	10,62	8,61	
rac-Глицилсерин NH ₂ CH ₂ CONHCH(CH ₂ OH)COOH	2,981	8,100	5,540	11,12	9,12	1
<i>L</i> -Глициллейцин NH ₂ CH ₂ CONHCH- -(CH ₂ CH(CH ₃)CH ₃)COOH	3,180	8,290	5,735	11,11	9,11	
Глицилпролин NH ₂ CH ₂ CON (CH ₂) ₃ CHCOOH	2,840	8,530	5,685	11,69	9,68	
Аланилпролин NH ₂ CH (CH ₃) CON (CH ₂) ₃ CHCOOH	3,040	8,380	5,710	11,34	9,34	
2-Қарбамоилаланин H ₂ NOCC(CH ₃) (NH ₂) COOH	2,970	8,020	5,495	11,05	9,05	
Aспарагин H ₂ NOCCH ₂ CH (NH ₂) COOH	2,020	8,800	5,410	12,78	10,77	
Глутамин H ₂ NOC (CH ₂) ₂ CH (NH ₂) COOH	2,170	9,130	5,650	12,96	10,95	
1-Глутаминамовая кислота NH ₂ CH(CONH ₂)CH ₂ CH ₂ COOH	3,810	7,880	5,835	10,09	8,08	
2-Гидроксиаспарагин H ₂ NOCCH ₂ C (OH) (NH ₂) COOH	2,310	7,170	4,740	10,87	8,86	
3-Гидроксиаспарагин Н ₂ NOCCH(OH) CH(NH ₂) COOH	2,120	8,260	5,190	12,14	10,13	
Аланилглицилглицин NH ₂ CH(CH ₃) CONHCH ₂ - -CONHCH ₂ COOH	3,210	8,150	7,680	10,95	8,94	
Глициласпарагин NH ₂ CH ₂ CONHCH (CH ₂ CONH ₂) COOH	2,947	8,400	5,673	11,46	9,45	
Глутаминилглицин NH ₂ CH(CH ₂ CH ₂ CONH ₂)- -CONHCH ₂ COOH	3,150	7,520	5,335	10,38	8,37	
	1				The second	

1.	The same	Carry Control	The state of		SCHOOL STATE	10000	Maria Maria	100	Valle and	1. 10 + 1			
	7	8	9	10	11	12	13	14	15	16	17	18	19
	6,57	5,86	5,40	5,02	4,67	4,32	3,94	3,49	2,82	1,18	0,40	0,13	0,04
	6,62	5,91	5,45	5,07	4,72	4,37	3,99	3,53	2,87	1,21	0,41	0,13	0,04
	6,57	5,86	5,40	5,02	4,67	4,32	3,94	3,49	2,82	1,18	0,40	0,13	0,04
	6,47	5,77	5,30	4,92	4,57	4,22	3,84	3,39	2,73	1,12	0,38	0,12	0,04
	6,98	6,28	5,81	5,43	5,08	4,73	4,35	3,89	3,21	1,45	0,50	0,16	0,05
	7,01	6,31	5,84	5,46	5,11	4,76	4,38	3,92	3,24	1,47	0,51	0,16	0,05
	7,09	6,39	5,92	5,54	5,19	4,84	4,46	4,00	3,32	1,52	0,54	0,17	0,05
	6,76	6,05	5,59	5,20	4,85	4,50	4,13	3,67	2,99	1,30	0,44	0,14	0,05
i	7,26	6,56	6,09	5,71	5,36	5,01	4,63	4,16	3,48	1,65	0,59	0,19	0,06
	7,32	6,62	6,15	5,77	5,42	5,07	4,69	4,22	3,54	1,69	0,61	0,20	0,06
	7,62	6,92	6,45	6,07	5,72	5,36	4,98	4,52	3,83	1,92	0,72	0,23	0,07
	6,53	5,83	5,36	4,98	4,63	4,28	3,90	3,45	2,78	1,16	0,39	0,12	0,04
	7,03	6,33	5,86	5,48	5,13	4,78	4,40	3,94	3,26	1,48	0,52	0,17	0,05
	7,02	6,32	5,85	5,47	5,12	4,77	4,39	3,93	3,25	1,48	0,52	0,17	0,05
	1,02	0,02	0,00	0,11							0,02		
	7,60	6,90	6,43	6,05	5,70	5,34	4,96	4,50	3,81	1,91	0,71	0,23	0,07
	7,25	6,55	6,08	5,70	5,35	5,00	4,62	4,15	3,47	1,64	0,59	0,19	0,06
	6,96	6,26	5,79	5,41	5,06	4,71	4,33	3,87	3,19	1,43	0,50	0,16	0,05
	8,69	7,99	7,52	7,13	6,78	6,43	6,05	5,58	4,88	2,86	1,25	0,43	0,14
	8,87	8,17	7,70	7,31	6,96	6,61	6,23	5,76	5,06	3,02	1,37	0,47	0,15
	6,00	5,29	4,83	4,45	4,10	3,76	3,39	2,94	2,30	0,88	0,29	0,09	0,03
	6,78	6,07	5,61	5,22	4,87	4,52	4,15	3,69	3,01	1,31	0,45	0,14	0,05
	8,05	7,35	6,88	6,50	6,14	5,79	5,41	4,94	4,25	2,28	0,90	0,30	0,09
	6,86	6,15	5,68	5,30	4,95	4,60	4,22	3,77	3,09	1,36	0,47	0,15	0,05
	7.27	6.66	6.10	5.01	E 40	E 11	4.70	1.07	0.50	1.70	0.00	0.00	0.00
	7,37	6,66	6,19	5,81	5,46	5,11	4,73	4,27	3,58	1,72	0,62	0,20	0,06
	6,29	5,59	5,12	4,74	4,39	4,05	3,67	3,22	2,57	1,03	0,34	0,11	0,03
	17	1					EV 201		18 39	1233			1

1	2	3	4	5	6
Глицилдиаланилглицин NH ₂ CH ₂ CO (NHCH (CH ₃) CO) ₂ - -NHCH ₂ COOH	3,300	7,930	5,615	10,64	8,63
Лейцилоктаглицилглицин NH ₂ CH (CH ₂ CH (CH ₃) ₂)- -CO (NHCH ₂ CO) ₈ NHCH ₂ COOH	2,220	7,840	5,030	11,62	9,61
o - N , N -Диметиламинобензойная кислота o - $(CH_3)_2$ NC $_6$ H $_4$ COOH	1,400	8,420	4,910	13,02	11,01
Таурин NH ₂ CH ₂ CH ₂ SO ₃ H	-0,330	9,061	4,366	15,38	13,38

^{**} Термодинамическая константа.

$$M = \frac{1+2\sqrt{K_2/K_1}}{1+[H^+]/K_1+K_2/[H^+]}.$$
 (14)


Выведем [Н+] и получим

$$(M/K_1) \cdot [H^+]^2 - (1+2\sqrt{K_2/K_1} - M) \cdot [H^+] + MK_2 = 0,$$
 (15)

откуда найдем выражения для $[H_1^+]$ и $[H_2^+]$. Разность отрицательных логарифмов последних дает величину

$$\Delta pH = pH_2 - pH_1 = -\lg\left(\frac{A - \sqrt{A^2 - B}}{A + \sqrt{A^2 - B}}\right),$$
 (16)

где
$$A = 1 + 2\sqrt{K_2/K_1} - M$$
 и $B = 4M^2 \cdot K_2/K_1$.

Зависимость концентрации цвиттерионной формы глицина (1) и таурина (2) от рН среды.

Задавая значение M, по формуле (16) можно найти Δ pH, где амфолит в количестве M выступает в цвиттерионной форме. Нами вычислены изоэлектрические диапазоны 79 аминокислот. Результаты вычислений обработаны на ЭВМ ЕС 1022 и представлены в таблице.

По данным таблицы можно построить кривые зависимости содержа-

7	8	9	10	11	12	13	14	15	16	17	18	19
6,55	5,85	5,38	5,00	4,65	4,30	3,92	3,47	2,80	1,17	0,39	0,13	0,04
7,53	6,83	6,36	5,98	5,63	5,28	4,89	4,43	3,74	1,85	0,68	0,22	0,07
8,93	8,23	7,76	7,37	7,02	6,67	6,29	5,82	5,12	3,08	1,41	0,49	0,16
11,30	10,59	10,13	9,74	9,39	9,04	8,66	8,19	7,48	5,40	3,43	1,67	0,60
The same	The state of the state of	100000	100000		(0)	1 545		100 300	1000	1 311	2100	0000

ния цвиттерионной формы амфолита от значения pH среды. Для этой цели из значений pH_{изо} и Δ pH находят значения pH₁ и pH₂, соответствующие определенному содержанию цвиттерионов (или неионной формы амфолита, если $pK_T \rightarrow 0$) в растворе. Например, для β -аланина pH_{изо} = 6,955 и $K_T \rightarrow \infty$. При концентрации цвиттериона, равной 10%, результаты будут таковы: Δ pH = 8,720; pH₁ = 6,955 – 8,720/2 = 2,595 и pH₂ = 6,955 + 8,720/2 = 11,315.

Кривые, проведенные через найденные таким образом точки, для

глицина и таурина представлены на рисунке.

Выводы

- 1. Выведены уравнения, позволяющие вычислять на основе макроконстант ионизации органических амфолитов концентрации всех ионных форм амфолита в случаях $K_T \to 0$ и $K_T \to \infty$.
- 2. Выведены уравнения для случая, если известны макроконстанты ионизации и константа таутомерного равновесия K_T .
- 3. Выведены уравнения для нахождения концентрации ионных форм органических амфолитов в изоэлектрической точке.
- 4. Содержание цвиттерионной формы амфолита в изоэлектрической точке зависит от константы K_T и от соотношения констант K_2 и K_1 .
- 5. По составленной автором программе проведен на ЭВМ расчет изо-электрических диапазонов 79 аминокислот.

ЛИТЕРАТУРА

- Зайонц В. И. Об условиях существования цвиттерионов. Ж. орган. хим., 1978, 14, № 2, 402—409.
- Serjeant, E. P. Zwitterion ratios of aminobenzoic acids. Aust. J. Chem., 1969, 22, N 6, 1189—1192.
- 3. *Hitchcock, D. I.* Calculation of isoelectric zones and isoelectric points. J. Biol. Chem., 1936, 114, N 2, 373—379.
- 4. Chemical Rubber Company Handbook of Chemistry and Chemical Physics. (Ed. Weast, R. C.) West Palm Beach, 1978, 765.
- 5. Таблицы констант скорости и равновесия гетеролитических реакций, т. 1(1). (Под ред. Пальма В. А.) М., 1975.
- Курганов А. А. Устойчивость комплексов меди(II) с N-алкил-α-аминокислотами. Координац. хим., 1977, 3, 667—671.

 Cohn, E. J., Edsall, J. T. Proteins, Amino Acids and Peptides as Ions and Dipolar Ions. New York, 1943, 689.
Edward, J. T., Farell, P. G., Job, J. L., Poh, B.-L. Re-examination of the Kirkwood — Westheimer theory of electrostatic effects. II. Possible conformations of α , ω -amino-acids in aqueous solutions, as deduced from dissociation constants. — Can. J. Chem., 1978, 56, N 8, 1122—1133.

Институт химии Академии наук Эстонской ССР Поступила в редакцию 29/111 1983

A. KUUSK, S. FAINGOLD

ORGAANILISTE AMFOLÜÜTIDE PROTOLÜÜTILISE TAUTOMERISATSIOONI **UURIMINE**

1. Aminohapete ioonvormide kontsentratsioonide ja isoelektriliste diapasoonide arvutamine happelise dissotsiatsiooni makrokonstantidest lähtudes

Lähtudes happelise dissotsiatsiooni konstantidest (K_1 ja K_2) ja tautomeersest tasa-kaalukonstandist K_T , on tuletatud võrrandid amfolüüdi mitmesuguste ioonvormide kontsentratsioonide arvutamiseks sõltuvalt keskkonna pH-st. Tsvitterioonse ja neutraalse vormi hulk isoelektrilises punktis sõltub konstandist K_T ning konstantide K_2 ja K_1 suhtest. 79-st isoelektrilises punktis peamiselt tsvitterioonses vormis aminohappest kogumile on arvutatud autorite tuletatud võrrandite järgi isoelektrilise diapasooni väärtused.

A. KUUSK, S. FAINGOLD

INVESTIGATION OF THE PROTOLYTIC TAUTOMERIZATION OF ORGANIC AMPHOLYTES

1. Calculation of the concentration of ionic forms and isoelectric zones of amino acids on the basis of macroconstants of acidic dissociation

The equations for the calculation of concentrations of various ionic forms of ampholytes depending on the pH of medium are deduced from the acidic dissociation constants K_1 and K_2 and the tautomeric equilibrium constant K_T . The amounts of zwitter-ionic and neutral form in the isoelectric point depend upon the constant K_T and the K_2 to K_1 ratio. For 79 amino acids, in the isoelectric points, which exist mainly in the zwitter-ionic form the values of isoelectric zones are calculated by means of the equations derived.