EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. 31. KÖIDE KEEMIA. 1982. NR. 1

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 31 ХИМИЯ. 1982, № 1

https://doi.org/10.3176/chem.1982.1.12

УДК 541.64: 543.544.45: 678.029.65

Айли КОГЕРМАН, Л. КУТЬИНА, Г. ВАСИЛЕНКО, О. КИРРЕТ

ИЗУЧЕНИЕ ВЛИЯНИЯ АНТИОКСИДАНТОВ ТИПА ЭФИРОВ 4-ОКСИДИФЕНИЛАМИНА НА РЕАКЦИЮ ТЕРМОДЕСТРУКЦИИ ПОЛИКАПРОАМИДА МЕТОДОМ СТУПЕНЧАТОЙ ПИРОЛИЗНОЙ ГАЗОВОЙ ХРОМАТОГРАФИИ

AUL KOGERMAN, L. KUTIINA, G. VASSILENKO, O. KIRRET. 4-OKSUDIFENÜÜLAMIINI TÜÜPI ANTIOKSÜDANTIDE TOIME POLÜKAPROAMIIDI TERMILISE LAGUNEMISE REAKTSIOO-NILE, UURITUNA ASTMELISE PÜROLÜÜSGAASIKROMATOGRAAFIA MEETODIL

AUL KOGERMAN, L. KUTYINA, G. VASILENKO, O. KIRRET. INVESTIGATION OF INFLUENCE OF STABILIZERS-ETHERS OF 4-OXYDIPHENYLAMINE TO REACTION OF THERMODE-STRUCTION OF POLYCAPROAMIDE BY STEPWISE PYROLYSIS GAS CHROMATOGRAPHY

Перспективными антиоксидантами для поликапроамида (ПКА) считаются соединения класса эфиров 4-оксидифениламина, прибавляемые в расплав ПКА в малых количествах и сравнительно мало окрашивающие готовое изделие из ПКА. Ранее было показано, что вышеназванные антиоксиданты ингибируют реакцию термодеструкции ПКА и в инертной среде [¹]. Методом пиролитической газовой хроматографии (ПГХ) было показано, что эфиры 4-оксидифениламина тормозят выделение СО при термодеструкции ПКА [²]. Авторы этого сообщения приводят данные об исследовании влияния указанных соединений на выход при пиролизе ПКА є-капролактама, применяя метод ступенчатой пиролизной газовой хроматографии (СПГХ), использованной ранее для изучения кинетики выделения H₂O, CO, CO₂ при термодеструкции целлюлозы [³].

Пиролиз образцов (0,3—1,5 *мг*) проведен в пиролизаторе с платиновой спиралью в области температуры 300—550 °С со ступенчатым повышением температуры через каждые 20°. ε-Капролактам отделяли от других продуктов пиролиза и определяли количественно в колонкс из нержавеющей стали длиной 2 *м*, Ø 4 *мм*, с хроматон-*н*-супером и нанесенными на ного 5% версамида 900 при температуре 200°, скорость газа-носителя (аргон) 50 *мл/мин*, хроматограф «Вырухром» с пламенно-ионизационным детектором.

Образцы ПКА нитей содержали антиоксиданты с общей формулой

$$\left[\bigcirc -\mathrm{NH} - \bigcirc - \right]_2 R.$$

Сравнивая данные СПГХ по выделению є-капролактама при пиролизе ПКА с данными динамической термогравиметрии, можно заметить, что они совпадают (рис. 1). Общий выход є-капролактама при СПГХ ПКА составляет ~350 $\mu г/Mг$. Температура максимального выхода є-капролактама ~430°, что совпадает с максимумом потери массы на кривой ДТГ.

Выход ε-капролактама при проведении пиролиза образцов ПКА, содержащих стабилизаторы класса эфиров 4-оксидифениламина

Образец	Содержание антиоксиданта, %	Выход ε-капро- лактама, ΔS/мг	Температура на- чала выделения в-капролактама, °C
ПҚА:			
без добавки	_	175.31	350
c H-1	0.3	72,53	390
с Н-1 в расплаве	0.3	110,28	390
с Н-1 в лактаме	0,3	128,70	365
в сорбитане	0,3	90,27	380
c H-3	0,3	75,60	380
c C-47	0,5	68,25	370
c C-41	0,5	78,56	380
c C-1	0,5	72,19	385
c C-49	0,5	85,85	370
c HC-1	0,5	33,1	400
c HC-2	0,5	55,53	385
c HC-2	0,1	76,73	385

Сравнение влияния разных антиоксидантов на общий выход є-капролактама при термодеструкции ПКА показывает, что при наличии всех антиоксидантов он уменьшается в 1,4—5,3 раза, подавляя этим разложение основной цепи макромолекулы ПКА при ее термодеструкции (таблица). Под действием антиоксидантов температура начала разложения повысилась на 15—50° по сравнению с максимальной температурой разложения исходного ПКА. Температура максимального выхода є-капролактама ингибированных образцов не отличается от температуры максимального выхода є-капролактама при пиролизе исходного ПКА (рис. 2).

Все исследованные выпускаемые формы антиоксиданта Н-1 [4] тормозят термодеструкцию ПКА, но не до такой степени, как чистый реак-тивный антиоксидант Н-1 (рис. 3). Новый антиоксидант Н-3, внедряемый в производство шинного корда, ингибирует выход є-капролактама при термодеструкции на таком же уровне, как антиоксидант Н-1. Для ингибирования термодеструкции ПКА требуется небольшое количество антиоксидантов — эфиров 4-оксидифениламина. Это подтверждается данными СПГХ о выходе ε-капролактама при пиролизе ПКА (рис. 4).

Вышеприведенные данные наглядно показывают значительную роль антиоксидантов аминного ряда при торможении термической деструкции полиамидов и дают возможность предположить существование свободно-радикального механизма термического разложения полиамидов.

ЛИТЕРАТУРА

- Кутьина Л. В., Сердюкова М. А., Василенко Т. А., Олейник В. Г., Третьяков Ю. П., Романовская Л. Г., Крулль М. А. Стабилизи-рующее действие производных из класса эфиров 4-оксидифениламина. Хим. волокна, 1977, № 4, с. 33-34.
- Krull, M., Kogerman, A., Kirret, O., Kutyina, L., Zapolski, D. Pyrolysis gas chromatography of capron (nylon 6) fibre stabilized with ethers of 4-oxydiphenylamine. J. Chromatogr., 1977, v. 135, p. 212—216.
 Heinsoo, E., Kogerman, A., Kirret, O., Vilkova, S., Coupek, J. Stepwise pyrolysis gas chromatography of viscose fibres. JAAP, 1980, v. 2, p. 131—139.
- Киррет О., Кутьина Л., Крулль М., Сердюкова М., Василенко Г., Рожанчук В., Когерман А. Исследование влияния различных выпуск-ных форм термостабилизатора Н-1 на термоокислительную деструкцию ста-билизированного поликапроамида. Изв. АН ЭССР. Хим., 1980, т. 29, № 2, о 154 156 c. 154-156.

Институт химии Академии наук Эстонской ССР Поступила в редакцию 8/V 1981