EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. 31. KÕIDE KEEMIA. 1982, NR. 1

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 31 ХИМИЯ. 1982, № 1

https://doi.org/10.3176/chem.1982.1.07

УДК 678.743.22+543.422.4

O. KIRRET, P.-A. KOCH, Lilja LAHE

CHARACTERIZATION OF POLYVINYL CHLORIDE FIBRES BY INFRARED SPECTROSCOPIC METHOD

Polyvinyl chloride fibres are such synthetic fibres that have been formed from linear macromolecules by straight-chain polymerization of vinyl chloride. The polyvinyl chloride fibres belong to the oldest commercial synthetic fibres. By polymerization of an aqueous emulsion of monomeric vinyl chloride, the polyvinyl chloride emulsion is obtained which is coagulated under the influence of electrolytes, dried and treated by either a dry or wet spinning process [1]. The chlorine content in such polyvinyl chloride is 55-58%. By after-chlorination of the polyvinyl chloride suspended in tetrachloroethane or carbon tetrachloride, polyvinyl chloride is obtained with the chlorine content of 64-66%. The properties of the after-chlorinated polyvinyl chlorides improve in many respects: their softening point rises, adhesion disappears, and organic solvent solubility improves. The last fact enables us to obtain afterchlorinated polyvinyl chlorides. By copolymerization of a mixture of vinyl chloride and vinyl acetate, a copolymerizate is obtained, containing up to 86-90% vinyl chloride and 14-10% vinyl acetate. In case of the proper degree of polymerization, an acetone-soluble polymer can be obtained from which copolymer fibres can be produced with the help of the dry spinning process.

In [2], the possibilities of distinguishing polyvinyl chloride fibres and copolymerized fibres of polyvinyl chloride and cellulose acetate were under consideration.

Table 1 presents data about the carbon and hydrogen content in after-chlorinated (Khlorin) and common (Leavin and Clevyl) polyvinyl chloride fibres. The chlorine content can be calculated from the difference. Acetokhlorin fibres contain, besides carbon, hydrogen and chlorine, also oxygen of an acetate group.

In Table 2 the data on the softening ranges and melting points of some polyvinyl chlorides are given.

The goal of this work was to find the possibilities of characterizing common polyvinyl chloride fibres, after-chlorinated polyvinyl chloride and

Table 1

Elemental analysis (C and H) of some investigated polyvinyl chloride fibres

Softening ranges and melting points of some polyvinyl chloride fibres (°C) [2]

Table 2

	Fibres	С	Н		
1.	Khlorin	34.45	$3.74 \\ 4.49$		
2.	Rhovyl	35.71			
3.	Clevyl	36.39	4.12		
4.	Leavin	38.67	5.01		
5	Acetokhlorin	36.53	4.30		

	Con	Common fibres			
Softening range	Rhovyl 72—75	Clevyl 110	Leavin 130	Piviacid 80—90	
Melting point	160	180			

The infrared spectra of some polyvinyl chloride fibres: 1 — leavin, 2 — khlorin, 3 — rhovyl, 4 — clevyl, 5 — acetokhlorin.

fibres from polyvinyl chloride and cellulose acetate (85:15%) by the infrared spectroscopic method.

Figure presents the infrared spectra of some polyvinyl chloride fibres.

Table 3 compares our data about the absorption bands of infrared spectra of polyvinyl chloride fibres with those of some authors such as Krimm, Tasumi, Shimanouchi and H. U. Pohl [³] and E. Schröder et al. [⁴].

al. [4]. The absorption bands of infrared spectra of polyvinyl chlorides in the regions 615, 639 and 680—685 cm⁻¹ are characteristic of the CHCl stretching. According to H. U. Pohl and D. O. Hummel [⁵] these bands can be separated into single ones in the regions 603, 613, 624, 636, 647, 677 and 696 cm⁻¹. The absorption bands at 835 and 960—965 cm⁻¹ correspond to the —CH₂ rocking. An absorption band at 930 cm⁻¹ is typical of the after-chlorinated polyvinyl chlorides (Khlorin), the infrared spectra of other common polyvinyl chlorides contain no such absorption band.

4*

Absorption bands of infrared spectra of polyvinyl chloride fibres, cm-1

Khlorin	Rhovyl	Clevyl	Leavin	Acetokhlorin	Assignment
615	610	610	610	615	······································
635	635	635	635	000	v (C—Cl)
680 755	085	685	680	680)	·· (C Cl)
830	830	830	830	100	r (CH ₂)
930 965	965	965	960	970 vw	r (CH ₂)
		1070			v (CC)
1080	1100	1095	1100		v (CC)
1190	1195	1193	1200	1170	v (CC)
1245	1250	1250	1255	1235 1240	δ (CH); ν (C-O-C)
1330	1330	1330	1335	1330	δ (CH); t (CH ₂)
1380	1380	1380	- Common	1375	w (CH ₂); CH ₃ -deformation
1425	1430	1425	1428	1430	δ (CH ₂)
	1690 vw			1750	
001E	0010	0010	1710	1750	v(C=0)
2815 VW	2810	2810	2860	2850 ym	$0 (CH_2) + W (CH_2)$
2920	2910	2910	2910	2920	v_s (CH ₂) v_c (CH ₂)
2960	2965	2965	2965	2960	v (CH)

Table 4

More characteristic absorption bands of infrared spectra of polyvinyl chloride fibres, cm⁻¹

Khlorin	615	635	680	755	830	965	1190	1245
Diana	1330	1380	1425	2850	2920	2960	1105	1050
Rnovyl	1330	1380	1430	2845	2910	965 2965	1195	1250
Clevyl	610	635	685	755	830	965	1193	1250
Leavin	607	635	685	750	830	1200	1255	They
Acetokhlorin	1335 615	1380	1428 680	2850 760	2910	2965 970	1170	1240
	1330	1375	1430	1750	2850	2920	2960	

The absorption bands at $1080-1100 \text{ cm}^{-1}$ are due to the C--C stretching. The absorption bands at $1245-1255 \text{ cm}^{-1}$ correspond to the C--H bending. The interpretation of other absorption bands is given in Table 3.

The acetate structure in Acetokhlorin is characterized by the C=O stretching at 1745 cm⁻¹, the CH₃-deformation at 1375 cm⁻¹ and the C-O-C stretching at 1240 cm⁻¹ [⁶]. Both infrared spectra and elemental analyses were performed by the previously described method [⁷].

Table 4 shows the most characteristic absorption bands of polyvinyl chloride fibres, on the basis of which after-chlorinated and common polyvinyl chlorides and acetate groups containing polyvinyl chlorides (Aceto-khlorin) can be characterized and distinguished.

REFERENCES

- 1. Hill, R., Fibres from synthetic polymers, Amsterdam London, 1953, p. 64-76, 471-521.
- 2. Koch, P.-A. Faserstoff-Tabellen. Polyvinylchloridfasern, Mönchengladbach, 1968, p. 3.
- Hummel/Scholl, Atlas der Kunststoff-Analyse, B. I, T I, S., München 1968, 3. S. 147-148.
- Schröder, E., Frank, J., Hagen E. Ausgewählte Methoden zur Plastanalytik, Berlin 1976, S. 169.
 Pohl, H. U., Hummel, D. O. Quantitative IR-spektroskopische Untersuchungen
- der Mikrostruktur von Polyvinylchlorid, Makromolekulare Chem, 113 (1968) S. 203.
- 6
- H u m m el/S c h o 11. Atlas der Kunststoff-Analyse, München 1968, B. I, T. I, S. 111. Kirret, O., Pank, Maret, Lahe, Lilja. Characterization and identification of polyester fibres and their modification by infrared spectrometric method. Eesti NSV Teaduste Akadeemia Toimetised, Keemia, 29, 2, 1980, p. 92.

Academy of Sciences of the Estonian SSR. Institute of Chemistry

Received Oct. 9, 1981

O. KIRRET, P.-A. KOCH, Lilja LAHE

POLÜVINÜÜLKLORIIDKIUDUDE ISELOOMUSTAMINE **INFRAPUNASE SPEKTROMEETRIA MEETODIL**

Artiklis vaadeldud harilike polüvinüülkloriidkiudude, järelklooritud polüvinüülkloriidkiudude (kloriin) ning polüvinüülkloriidi ja tselluloosatsetaadi segu kiudude infrapunaste spektrite absorptsiooniribad on paljudel juhtudel sarnased, kuid on ka mõningaid erinevusi, mistõttu on võimalik üht kiuliiki teisest eristada.

О. КИРРЕТ, П.-А. КОХ, Лилья ЛАХЕ

ХАРАКТЕРИСТИКА ПОЛИВИНИЛХЛОРИДНЫХ ВОЛОКОН МЕТОДОМ ИНФРАКРАСНОЙ СПЕКТРОСКОПИИ

ИК-спектры поливинилхлоридных волокон во многих случаях имеют аналогичные полосы поглощения, но отдельные их разновидности, например, перехлорированные поливинилхлоридные и сополимерные волокна (поливинилхлорид + ацетат целлюлозы) имеют специфические полосы поглощения, что позволяет отличать их друг от друга.