ÉÉSTI NSV TEADUSTE AKADÉEMIA TOIMÉTISED. 31. KÖIDÉ KEEMIA. 1982, NR. 1

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 31 ХИМИЯ. 1982, № 1

https://doi.org/10.3176/chem.1982.1.05

УДК 543.54; 553.983

Сильвия КИВИРЯХК, И. КЛЕСМЕНТ

ХАРАКТЕРИСТИКА ЦИКЛИЧЕСКИХ УГЛЕВОДОРОДОВ НЕКОТОРЫХ СМОЛ ТЕРМИЧЕСКОЙ ДЕСТРУКЦИИ СЛАНЦА-КУКЕРСИТА

При термической деструкции топлив сапропелитового типа образуется множество ароматических углеводородов, количество и состав которых сильно зависят от глубины температуры деструкции. В основном эти соединения — полициклические ароматические углеводороды, структура которых мало отражает строение исходного органического вещества сапропелита. Во всех смолах деструкции топлив сапропелитового типа — горючих сланцев, присутствует небольшое количество (5—10%) соединений, которые при адсорбционно-хроматографическом разделении смол образуют переходную группу от алифатических к полициклическим ароматическим углеводородам. Обычно эти группы содержат несколько гомологических рядов углеводородов; предполагается, что эти углеводороды — алкилбензолы, имеющие длинные боковые цепи. Настоящая работа посвящена изучению состава указанных гомологических рядов, а также исследованию влияния условий термической деструкции на состав полициклических соединений.

При анализе жидких продуктов термической переработки твердых топлив значительное количество информации получают в результате применения хроматографических методов. Используемый скоростной анализ [¹] сочетает в себе групповой анализ, производимый с помощью препаративной тонкослойной хроматографии (TCX), с последующим определением индивидуальных компонентов методом газожидкостной хроматографии (ГЖХ). Требуемое количество вещества — 0,5 г. Поскольку состав таких смол сложен и установление полного индивидуального состава затруднительно, то для их дополнительной характеристики могут быть с успехом привлечены спектральные методы инфракрасная спектроскопия (ИК) и спектроскопия ядерно-магнитного резонанса (ЯМР). Информация, получаемая исследованием смол спектральными методами, равно как и методом ГЖХ, оказывается более однозначной и легче трактуемой в случае однотитных, предварительно выделенных из смолы химических групп соединений.

Выделяемые с помощью препаративной TCX группы в количественном отношении зачастую слишком малы, чтобы с этим количеством можно было осуществить все упомянутые выше анализы, поэтому для разделения исходной смолы на группы целесообразно применять разновидность препаративной TCX — хроматографию в сухой колонке [^{2, 3}]. Последняя позволяет разделять на группы в десять раз бо́льшие количества смолы и тем самым выделять более узкие ее фракции — подгруппы в пределах каждой химической группы.

Экспериментальная часть

Анализу были подвергнуты смолы, полученные при термической переработке сланца-кукерсита, а именно: 1) смола камерных печей; 2) смо-

Рис. 1. ¹Н-ЯМР-спектры фракций циклических соединений смолы установки с твердым теплоносителем.

ла установки с твердым теплоносителем; 3) смола лабораторной гидрогенизации кукерсита — условия гидрогенизации описаны в [4]. Пробы указанных смол были разделены на группы однотипных соединений как с помощью метода ТСХ, так и хроматографированием в сухой колонке. В обоих методах адсорбентом служил силикагель L 40/100, элюентом — н-гексан. Для препаративной ТСХ использовали пластинки размерами 24×24 см, с толщиной слоя адсорбента 2 мм, навеска пробы 0,5 г. Сухая колонка имела диаметр 2,6 см, высоту 60 см; рабочая высота шихты адсорбента составляла 50 см; навеска пробы — 5 г. Хроматографирование в сухой колонке проводилось с помощью восходящего потока элюента. Удержанные в адсорбенте вещества экстрагировались диэтиловым эфиром из отдельно взятых зон пластинки или сухой колонки. Когда брали соответствующие зоны, ориентировались по R_f эталонных веществ и по видимым различиям зон как при дневном, так и ультрафиолетовом свете. Результаты общего группового анализа исследуемых смол приведены в таблице. При более детальном разделении из более узких зон сухой колонки были выделены соответственно более узкие фракции-подгруппы. Например, группа 4 в таблице, по данным детального анализа в сухой колонке, кроме нейтральных кислородсодержащих соединений включает также и менее полярную часть фенолов: фенолы камерной смолы в группе 4 составляют 8,4% в пересчете на суммарную смолу, при общем содержании фенолов в камерной смоле 16,1%.

Групповой состав смол сланца-кукерсита различного происхождения

	Группы соединений	Камерные печи	Установка с твердым тепло- носителем	Гидрогени- зация
1. П 2 М	Парафины и олефины Моноциклические соединения	8,4 13,4	7,2	10,5
3.	Полициклическая ароматика	28,6	10,5	8,9
4. 5.	Кислородсодержащие соединения Сильнополярные соединения	16,8 32,9	32,2 44,2	29,1 45,8

Смо́лы характеризовали по отдельным фракциям как по суммарным химическим группам, так и по подгруппам. Индивидуальные компоненты фракций определяли при помощи ГЖХ на хроматографе «Хром-4». ¹Н-ЯМР-спектры снимали на аппарате «Tesla BS-487-С», ИК-спектры — на аппаратах UR-10 и «Specord IR 75».

Ниже приводятся некоторые характеристики циклических углеводо родов, т. е. групп 2 и 3 (см. таблицу). В связи с более детальным разделением в сухой колонке полученные подгруппы в дальнейшем обозначены соответственно как 2 I, 2 II и 3 I, 3 II (для камерной смолы 3 I — 3 IV).

Смола установки с твердым теплоносителем. По спектрам ¹Н-ЯМР последовательных фракций смолы установки с твердым теплоносителем (рис. 1) видно, что разделение в сухой колонке происходит как по ароматичности, так и по алифатической ненасыщенности. Фракция моноциклических соединений 2 I не содержит ни ароматических протонов (район 7-8 м. д. пуст), ни 1-олефинов или соответствующих боковых цепей [5, 6]. Протоны олефиновой связи представлены в середине цепи или в цикле (5-6 м. д.), также имеется сигнал около 2 м. д., относящийся к соседним с олефиновой связью — CH₂-группам. Такие сигналы, по данным [4], характерны для циклогексена и циклогексадиена. Судя по величине R_f фракции 2 I в сухой колонке, последние соединения — вероятные структурные элементы данной фракции. Наличие нафтеновых структур подтверждается поглощением при 950 см-1 в ИК-спектре фракции 2 I, тогда как характерные для ароматики поглощения (700-850 см-1 и др.) там отсутствуют. Сигнал 1,32 м. д. наиболее четкий в ¹Н-ЯМР-спектре фракции 2 I, а также в следующих спектрах. Данный сигнал принадлежит протонам группы -- СН2открытой цепи и циклоалкана. На наличие длинных боковых цепей (--СH₂--)_n, где n≥2, указывает сигнал концевой ---СH₃-группы (0,9 м. д.) и соответственно на ИК-спектре наблюдается поглощение при 720 см-1. Из вышеуказанного следует, что 2 I — фракция циклоалкенов с длинными боковыми цепями. Хроматограмма ГЖХ фракции 2 I (рис. 3) показывает группы изомеров, составляющих несколько (не менее четырех) гомологических рядов гидроароматических соединений с общим числом углеродных атомов в молекуле С10-С16. Следует учесть, что производные циклогексана состоят из цис-транс-изомеров, благодаря чему увеличивается число гомологических рядов.

¹Н-ЯМР-спектр следующей фракции 2 II — спектр одноядерной ароматики (сигнал ароматики 7,0—7,2 м. ∂ .). Алифатическая ненасыщенность в 2 II отсутствует, а новый сигнал в алифатике — 2,26 м. ∂ . соответствует СН₃-группе у бензольного кольца. Фракция 3 I смолы установки с твердым теплоносителем, судя по ее R_f при адсорбционнохроматографическом разделении, не что иное как полициклическая ароматика, однако спектр ее в районе алифатических протонов содержит все те же сигналы, что и нафтеновая фракция 2 I. Сигнал аро-

Рис. 2. ¹Н-ЯМР-спектры фракций циклических соединений смолы камерных печей.

матики фракции 3 I близок к 7,0 м. д., что соответствует изолированному ароматическому кольцу в молекуле, т. е. 3 I — гибридная ароматическо-нафтеновая фракция. Во вторую фракцию полициклической ароматики 3 II входит бо́льшая часть (около 80% общего количества) полициклической ароматики, находящейся в смоле установки с твердым теплоносителем. Фракция 3 II содержит молекулы с двумя сконденсированными ароматическими кольцами (сигнал ароматики 7,3— 7,5 м. д.). Указанный сигнал, хотя и более сильный чем сигнал ароматики во фракциях 2 II и 3 I, но по своей величине он все же уступает совокупности сигналов алифатических протонов (0,9—5,0 м. д.), что указывает на наличие многозамещенных ароматических ядер. Размытая конфигурация сигнала ароматических протонов указывает на различное расположение заместителей у ароматики.

Смола камерных печей. Общая картина спектров фракций камерной смолы (рис. 2) отличается от картины спектров смолы установки с

Рис. 3. Газовая хроматограмма фракции 2 I — моноциклические соединения смолы установки с твердым теплоносителем. Капиллярная колонка 50 м дексил 300.

твердым теплоносителем. Спектры одноядерных соединений как циклоалкенов (фракция 2 I), так и алкилбензолов (фракция 2 II) весьма сходны со спектрами соответствующих фракций смолы установки с твердым теплоносителем. Однако следует отметить, что в то время, как в смоле установки с твердым теплоносителем количество фракций циклоалкенов 2 I и алкилбензолов 2 II приблизительно одинаково, в смоле камерных печей фракция 2 I составляет только около 15% общего количества моноциклических соединений. Кроме того фракция 2 II не содержит легких алкилбензолов, представленных в суммарной смоле.

Спектры ¹Н-ЯМР полициклической ароматики смолы камерных печей З I — З IV имеют иной характер: в них превалируют ароматические протоны, принадлежащие дважды и трижды сконденсированным бензольным кольцам (7,3 м. д.), что согласуется с более высокой температурой переработки сланца в камерных печах. Сигналы ароматических протонов (7—8 м. д.) четкие, и доля ароматических протонов превышает долю алифатических протонов (в промежутке 0,8—3,3 м. д.). Небольшой сигнал 3,7—3,8 м. д. соответствует — CH₂-группе в флуорене, аценафтене, дифенилметане. Судя по этим данным, в полицикли-

Рис. 4. Газовые хроматограммы фракций полициклической ароматики смолы камерных печей. Колонка 3,6 м × 3 мм, 7% Е 301 на целите 545. — нафталин, 2 2-метилнафталин, 3 1-метилнафталин, 4ли-5 метилнафталины, дифенил, 6 — метилдифенилы, 7 аценафтен, 8 — флуорен, 9 фенантрен + антрацен, 10 — метилфенантрены и метилантрацены, 11 пирен.

ческой ароматике камерной смолы доминирует незамещенная или малозамещенная конденсированная ароматика, что подтверждается и хроматограммами, представленными на рис. 4. Например, во фракциях камерной смолы 3 I и 3 II главный компонент — нафталин, во фракции 3 IV — антрацен, фенантрен. Малая степень замещения в кольце подтверждается и ИК-спектрами, в которых поглощение в промежутке 3000—3100⁻¹ см весьма значительно.

Обсуждение результатов

Как видно из таблицы, смола камерных печей, получаемая при высокой температуре (850 °C), отличается повышенным содержанием ароматических углеводородов. Судя по данным той же таблицы, дополнительное образование ароматики, особенно полициклической, происходило за счет кислородсодержащих и сильнополярных соединений.

Из вышеизложенного следует, что хроматография в сухой колонке — хороший метод разделения сложных смесей углеводородов, образующихся при термической переработке твердого топлива, в зависимости от степени их ненасыщенности, ароматичности и количества циклов. Получаемые по этому методу количества разделяемого вещества достаточны для проведения дополнительных исследований спектральными методами, из которых наибслее ценные данные поставляет ЯМР-спектроскопия.

Результаты настоящей работы показывают, что в сланцевой смоле присутствует небольшое количество производных циклогексана с длинными боковыми цепями, составляющими несколько гомологических рядов. Наличие соединений подобного типа было указано масс-спектрометрическим методом [7]. При разделении смолы производные циклогексана образуют самостоятельную пруппу только при применении четкого метода разделения. Наличие среди них производных циклопентана следует считать маловероятным.

ЛИТЕРАТУРА

- Klesment, I. Applications of chromatographic methods in biogeochemical investigations. J. Chromatogr., 1974, v. 91, p. 705—713.
 Loev, B., Snader, K. N. Dry column chromatography. A preliminary report. Chem. Ind. (London), 1965, v. 1, p. 15.
 Кивиряхк С., Клесмент И. Хроматография в сухой колонке. Состав смолы
- полукоксования липтобиолита. Изв. АН ЭССР. Хим., 1981, т. 30, № 3, c. 180-186.
- Клесмент И., Наппа Л., Винк Н. Результаты низкотемпературной деструк-тивной гидрогенизации концентрата керогена эстонского горючего сланцакукерсита. — Хим. тверд. топл., 1979, № 5, с. 33—39.
- 5. Mohacsi, E. Characteristic nuclear magnetic resonance spectral positions of hydrogen in organic substance structures. Analyst, 1966, v. 91, N 1, p. 67.
- NMR spectra catalog of the Instrument Division of Varian Associates. Copyright Varian Associates, 1963, USA. 6.
- 7. Уров К. Э. Термическая деструкция сланца-кукерсита в вакууме. — Хим. тверд. топл., 1976, № 5, с. 33-38.

Институт химии Академии наук Эстонской ССР Поступила в редакцию 2/VI 1981

Silvia KIVIRÄHK, I. KLESMENT

TSÜKLILISED SÜSIVESINIKUD MÕNEDES KUKERSIIDI **TERMILISE LAGUNDAMISE ÖLIDES**

Artik'is on esitatud kamberahjuõli, tahke soojuskandjaga seadmes ja laboratoorsel hüdrogeenimisel saadud õli analüüs kuivkolonnkromatograafia teel eraldatud üksikfraktsioonide (keemiliste gruppide) kaupa. Tsükliliste süsivesinike gruppide iseloomustusest näh-tub mono- ja bitsükliliste hüdroaromaatsete (hübriidsete) ühendite homoloogiliste ridade olemasolu õlides. Kamberahjuõli sisaldab rohkesti külgasendajateta polütsüklilisi aromaatseid ühendeid.

Silvia KIVIRAHK, I. KLESMENT

CYCLIC HYDROCARBONS IN THERMAL DECOMPOSITION OILS OF KUKERSITE OIL SHALE

The article reports analysis of oils from chamber furnace, solid heat carrier and labo-ratory hydrogenation. The analysis was carried out by individual fractions, i. e., chemical groups isolated from the total oils by dry column chromatography. The cyclic hydro-carbon groups are analyzed by gas chromatographic and spectral methods, giving evidence of the presence of homologous series of alicyclic compounds and aromatic-alicyclic (hybrid) compounds in oils.

A high concentration of polycyclic aromatic compounds with no side chains is characteristic of chamber furnace oil.