EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. 31. KÕIDE KEEMIA. 1982, NR. 1

> ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 31 ХИМИЯ. 1982, № 1

https://doi.org/10.3176/chem.1982.1.02

УДК 662.67

Лиа НАППА, И. КЛЕСМЕНТ, Н. ВИНК, К. КАЙЛАС

ИССЛЕДОВАНИЕ БАЛХАШИТА

2. Низкотемпературная деструкция

Приводятся результаты исследования балхашита методами низкотемпературной деструкции (гидрогенизацией, конверсией и полукоксованием). Опыты проводились с балхашитом, условно названным «черным», взятым с более высоких участков берега залива Ала-Куль оз. Балхаш. Сведения об образовании балхашита, а также литературный обзор исследований о нем и общая характеристика исследуемой пробы даны в предыдущем сообщении [¹].

Экспериментальная часть

В качестве сырья для анализов использовался измельченный балхашит со следующими показателями, $\%: \omega^a 1,0; A^a 6,0;$ условная органическая масса 94; элементный состав органического вещества (OB) С 75,5; H 10,7; N 0,7; O 12,5; выход битумоидов на OB — A 8,1 и С 5,4. Опыты проводились в качающемся автоклаве емкостью 2 л с электрообогревом, скорость повышения температуры 4 *град/мин*. Во всех опытах в автоклав загружали 100 г балхашита. Соотношение между балхашитом и бензолом (или водой, раствором щелочи) 1:2. Температура проведения опытов 370 °С. Продолжительность опыта 3 ч. Катализатор (молибдат аммония) наносили на сланец из расчета 1% молибдена на OB. В автоклаве были проведены:

1) каталитическая гидрогенизация в среде бензола при первоначальном давлении водорода 9,8 *МПа*;

2) конверсия водой;

3) конверсия 5%-ным раствором щелочи.

Полукоксование проводили в реторте, по ГОСТу 3168—66. Разделение жидких продуктов, а также их анализ проводили по описаной ранее методике [^{2, 3}].

Обсуждение результатов

Выход смолы полукоксования (табл. 1) составляет 80%. Против ожидания, деструкция балхашита в автоклаве дала более низкие выходы. Так, при конверсии балхашита водой выход смолы достигал лишь 65%, с 5%-ным щелочным раствором — 75% и при гидрогенизации — 69%. Необходимо отметить, что Н. Д. Зелинский [4] в процессе полукоксования балхашита получил только 63% смолы в пересчете на ОВ, которая имела чрезвычайно низкий удельный вес — 0,844.

Большее количество газа образуется при конверсии балхашита во-

Таблица 1

Выход и характеристика продуктов термической деструкции балхашита

Показатели	Конверсия водой	Конверсия 5%-ным раствором щелочи	Каталити- ческая гидро- генизация	Полукок- сование
Рабочее давление, <i>МПа</i> Остаточное давление, <i>МПа</i>	20 4,8	21 4,0	27 8,0	_
Выход вес. % от керогена:	2 Charles			
смола твердый остаток газ и потери	65 8 27	75 8 17	69 2 29	80 4 16
Характеристика смолы:	4	alla		
плотность показатель преломления молекулярная масса	0,899 1,490 400	0,891 1,485 350	0,847 1,472 320	0,910 1,499 340
Групповой состав:				
неароматические углеводороды алкилбензолы	29 2	32 2	56 5	30 3
полициклические ароматич. углево- дороды кислородсодержащие соединения	9 26	12 21	9 6	12 30
соединения	34	33	24	25

Состав газа термической деструкции балхашита

Таблица 2

	Методы обработки					
Компонент газа	конверсия водой	конверсия водным раствором щелочи	гидро- генизация	полукок- сование		
H ₂ O ₂	6,3 18,7	8,8 19,3	95,5 3,5	1,2		
N2 CH4 CO2	10,4 53,5		— — —	4,5 13,1 55,7		
CO C_2H_6	. 4,4	6,3	0,4	12,3 3,4		
C_2H_4 H_2S C_3H_8	1.8	1,0 2.7		2,2 1,9		
C_3H_6 iC_4H_{10}	0,9 0,2	1,1 0,2		1,7 1,0		
C_4H_8 C_4H_{10}	0,2 0,9	0,4 1,2		0,2 1,2		
$cisC_4H_{10}$	0,2 0,5	0,3	M. A.S. Tomonol	0,1		

дой и при гидрогенизации. Газы полукоксования и конверсии (табл. 2) характеризуются высоким содержанием углекислоты (об.%) до 56, метана до 13, этана до 6,3, в то время как другие компоненты, а именно пропан, пропилен, *н*-бутан, изобутан и т. д. присутствуют в газе в меньших количествах. Сероводород обнаружен лишь в газе полукоксования и при конверсии щелочным раствором. Присутствие такого большого количества углекислоты в газе объясняется разложением сложноэфирных групп в балхашите.

Рис. 1. Хроматограммы суммарных смол: *а* — полукоксования; *б* — конверсии водой; *в* — гидрогенизации. 9—31 числа атомов углерода в молекуле, соответствующие пикам *н*-алканов, 7—29 пикам *н*-алканонов, 9—17 пикам *н*-алкенов. Колонка: 3,6 *м* × 3 *мм*, 4% Е 301 на хроматоне N AW DMCS.

Если судить по показателям плотности и преломления, то нет существенной разницы между смолой полукоксования и смолами автоклавной обработки. Смола полукоксования имеет самый высокий показатель плотности и преломления, смола гидрогенизации, наоборот, наиболее легкая. Это подтверждается также величиной молекулярной массы. Смолы, полученные при деструкции балхашита, имеют более высокую молекулярную массу, чем смолы, полученные из горючих сланцев в тех же условиях. Повышение молекулярной массы, по-видимому, обусловлено присутствием гетероатомных соединений. В группо-

Рис. 2. Распределение н-алканонов в смолах термической деструкции: а полукоксования; б — конверсии водой; в — конверсии щелочным раствором. 1 — прямоцепочечные алканоны, 2 — алканоны с карбонильной группой в центральном положении.

вом составе имеется некоторое различие. Для всех смол характерен высокий процент неароматических углеводородов (30), а при гидрогенизации балхашита в среде бензола он доходит даже до 56. Повышенное содержание парафинов в гидрогенизате объясняется элиминированием карбонильной группы в процессе гидрогенизации, что доказывается отсутствием кетонов. Доля алкилбензолов незначительна — 2-5%. Содержание в смолах полициклической ароматики более или менее одинаково — 9-12%. Количество кислородсодержащих соединений типа н-алканов в смолах полукоксования и конверсии достигает 21-30%. Данные группового анализа совпадают с данными хроматографического. На рис. 16 четко видны пики н-алканов от С8 до С31 и н-алканонов от С7 до С29. Такая же картина наблюдается для смол конверсии в среде щелочного раствора и смолы полукоксования. Последняя содержит также и н-олефины от C₉ до C₁₇ (рис. 1a). При длине углеродной цепи C27-C31 преобладают нечетные гомологи, источником происхождения которых был воск. При более короткой цепи концентрация указанных гомологов оказывается лишь слегка повышенной. Совершенно иная картина наблюдается при гидрогенизации балхашита в среде бензола (1в), где образуется лишь незначительное количество н-алканонов, уже не обнаруживаемое на суммарной хроматограмме. В пиролизате куронгита были найдены также алифатические соединения С7-С30 [5]. Образование значительного количества н-алканонов при конверсии в водной или водно-щелочной среде имело место и в случае кукерсита [6]. Состав кетонов, образующихся при полукоксовании и водной конверсии, показан на рис. 2. Они разделены на две группы: н-алканоны-2 и н-алканоны с центральным расположе-

Рис. 3. ИК-спектры смол термической деструкции балхашита. 1 — полукоксование; 2 — конверсия водным раствором щелочи; 3 — конверсия водой; 4 — каталитическая гидрогемизация.

нием карбонильной группы (диалкилкетоны). В смоле полукоксования алканонов-2 мало; они сосредоточены, как обычно, в смолах полукоксования в области более низкого кипения. Отмечается чрезвычайно высокая концентрация первых гомологов С₉—С₁₁ указанного ряда. При водной конверсии выход кетонов, особенно алканонов-2, увеличивается. Диалкилкетоны имеют в основном длинную углеродную цепь. В конце их гомологического ряда наблюдается, как и у парафинов, значительное преобладание нечетных гомологов, заметное даже и при более короткой углеродной цепи. При сравнении двух групп с прямой углеродной цепью (парафины и кетоны) выясняется, что признаки первичной биологической продукции (преобладание нечетных гомологов) сохранились у кетонов лучше, чем у парафинов.

Характерные черты ИК-спектров исследуемых смол (рис. 3) — наличие абсорбционных полос в областях 2950—2860; 1470—1460 и 725 см⁻¹, стало быть в смолах преобладают длинные алкановые цепи; валентное колебание групп С—Н выражено при 750 см⁻¹. Колебание карбонильной группы выражено при 1735—1710; 1585 и 1380 см⁻¹. Видно, что наиболее высокое содержание карбонильной группы наблюдается в смолах, полученных водной конверсией, тогда как в процессе гидрогенизации они полностью разрушаются. Абсорбция при 1140 и 1085 см⁻¹ характерна для эфирных групп и для структур —С—О—С—.

Ранее сообщалось [¹], что исходным биологическим веществом для образования балхашита служили богатые жирами водоросли Botriococcus Braunii, проходившие в этом процессе вначале анаэробную стадию диагенеза, позже их преобразование заканчивалось в окислительных условиях. Важную роль жирных кислот в образовании балхашита и других сапропелитов отмечал еще Стадников [⁷]. Согласно [⁸], природные жирные кислоты при образовании керогена дикарбоксилируются, вместо эфирной группы образуется С—С-связь.

При деструкции балхашита образуется много газа, половину которого составляет углекислый, очевидно, потому, что в молодом сапропелите — балхашите сохранилось больше сложноэфирных групп, чем в старых горючих сланцах. В [1] было установлено, что в битумоиде мало парафинов, что свойственно незрелым каустобиолитам. Результаты настоящей работы доказывают обогащенность нерастворимого ОВ н-алкановыми структурами. Очевидно, концентрация парафинов в битумоиде увеличивается в ходе катагенетических процессов, в течение которых н-алкановые цепи отщепляются от высокомолекулярной части битумоида и нерастворимого керогена. Для битумоида балхашита характерно отсутствие в нем нечетных парафинов, наличие двуосновных кислот и другие показатели, доказывающие его бактериальное происхождение. Битумоид сингенетичен с нерастворимым ОВ, но действие бактерий на ОВ выражено слабее. В смоле полукоксования балхашита кетонов больше, чем в большинстве смол полукоксования горючих сланцев, при водной конверсии их количество еще более повышается. При конверсии кукерсита [6] мы предполагали, что дополнительное количество кетонов образуется при расщеплении поли-β-карбонильных структур. Нет никаких признаков присутствия в балхашите указанных структур, недостоверно образование карбонильных групп из других кислородных функциональных групп (образуется много CO₂). Весьма возможно, что образование кетонов в балхашите происходит из активных углеводородных структур в результате их гидрации и дегидрирования.

ЛИТЕРАТУРА

- Побуль Л., Клесмент И. Исследование балхашита. 1. Состав битумондов. Изв. АН ЭССР. Хим., 1981, т. 30, № 2, с. 75.
 Klesment, I. Application of chromatographic methods in biogeochemical investi-
- gation. J. Chromatogr., 1974, v. 31, р. 705—713. 3. Наппа Л., Клесмент И., Винк Н., Кайлас К. Изучение органического
- вещества горючего сланца месторождения «Мандра» низкотемпературной деструктивной гидрогенизацией. Изв. АН ЭССР. Хим., 1979, т. 28, № 3, с. 191-197.
- 4. Zelinsky, N. D. Künstliche Naphtha aus Balchasch-Sapropeliten. Brennstoff-Chemie, 1925, Bd. 6, N 23, S. 365—369.
- Klesment, I. Nappa, L. Investigation of the structure of Estonian oil shale kukersite by conversion in aqueous suspension. Fuel, 1980, v. 59, p. 117— 122.
- Сапе, R. F. Coorongite and the genesis of oil shale. Geochim. Cosmochim. Acta, 1969, v. 33, p. 257—265.
 Стадников Г. Л. Происхождение углей и нефти. М.-Л., 1937, с. 100—111.
 Клесмент И. Алифатические углеродные цепи керогена горючих сланцев. Изв. АН ЭССР. Хим. Геол., 1975, т. 24, № 2, с. 123—129.

Институт химии Академии наук Эстонской ССР Поступила в редакцию 29/V 1981

Lia NAPPA, I. KLESMENT, N. VINK, K. KAILAS

BALHASIIDI KOOSTIS

2. Lagundamine madalal temperatuuril

Balhašiidi hüdrogeenimisel, konverteerimisel ja utmisel saadud õlides on kuni 30% alifaatseid süsivesinikke (süsinikuahel C_8 — C_{31}); utte- ja konversiooniõlides on kõrge — 21—30% — ka *n*-alkanooni tüüpi ühendite sisaldus. IP-spektrid kinnitavad pikkade süsivesinikuahelate olemasolu õlides.

INVESTIGATION OF BALKHASHITE

2. Low temperature destruction

The results of hydrogenation, conversion in aqueous solution and sodium hydroxide, and semi-coking of balkhashite are discussed. The liquid products contain $\sim 30\%$ of straight-chain paraffins C_8-C_{31} . High is also the content of straight-chain alkyl ketones C_7-C_{29} in semicoking oil and in oil received by conversion (21–30%). The infrared spectrum of liquid products provides evidence of the presence of long straight chains in oil.