EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. 30. KÕIDE KEEMIA. 1981, NR. 1

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 30 ХИМИЯ. 1981, № 1

https://doi.org/10.3176/chem.1981.1.12

УДК 543.544.45: 541.12: 547.31

Кай КУНИНГАС, Сильвия РАНГ, О. ЭЙЗЕН

СВЯЗЬ МЕЖДУ ИНДЕКСАМИ УДЕРЖИВАНИЯ И ФИЗИКО-ХИМИЧЕСКИМИ СВОЙСТВАМИ *н*-АЛКЕНОВ И *н*-АЛКИНОВ

Kai KUNINGAS, Silvia RANG, O. EISEN. n-ALKEENIDE JA n-ALKÜÜNIDE RETENŢSIOONIINDEK-SITE JA FÜÜSIKALIS-KEEMILISTE OMADUSTE VAHELINE SEOS

Kai KUNINGAS, Silvia RANG, O. EISEN. THE RELATION BETWEEN RETENTION INDICES AND PHYSICO-CHEMICAL PROPERTIES OF *n*-ALKENES AND *n*-ALKYNES

Исследованием корреляций между индексами удерживания I [^{1–3}] и некоторыми физико-химическими свойствами *н*-алкенов и *н*-алкинов C₆—C₁₄ (молекулярной рефракцией R_D^{20} , плотностью d_4^{20} , и показателями преломления n_D^{20} [^{4–6}]), установлено, что величины R_D^{20} и I связаны между собой линейной зависимостью согласно уравнению

$$I = a + b R_p^{20}, \tag{1}$$

где *а* и *b* — константы.

В таблице приведены рассчитанные методом наименьших квадратов на ЭВМ 1010В значения констант *a* и *b* для некоторых *н*-алкенов и *н*-алкинов на четырех различных жидких фазах.

В то же время не обнаружено линейной зависимости ни между величинами *I* и n_{D}^{20} , ни между величинами *I* и d_{L}^{20} .

В характере изменения индексов удерживания изученных соединений, с одной стороны, и их молекулярных рефракций, показателей преломления и плотностей, с другой, в зависимости от положения кратной связи в молекуле наблюдается аналогия (рисунок). Наивысшими значениями этих характеристик обладают 2-изомеры (исключая молекулярную рефракцию), наименьшими — 1-изомеры. Чем выше суммарная полярность молекул, тем выше указанные свойства. Из рисунка

Значения	коэффициентов	уравнения	(1) для	ряда	углеводородов	при	110°	C
	and the second s			/ / / / / /	1				

Угле-	Сквалан		Апьезон L		Полифениловый эфир		Полиэтиленгли- коль 4000	
водороды	a	b	a	Ь	a	Ь	a	b
1-Алкены		21,61	-48,40	21,57	-14,61	21,55	16,23	21,57
транс-2-Алкены	-39,57	21,49	-34,07	21,46	39,86	21,43	29,14	21,50
цис-2-Алкены	-33,20	21,53	-28,62	21,58	13,51	21,44	49,50	21,47
транс-З-Алкены	-46,10	21,35	-39,56	21,24	-6,86	21,32	25,11	21,14
цис-З-Алкены	-37,57	21,25	-31,30	21,23	1,43	21,23	38,50	21,09
1-Алкины	-17.16	21,62	-2.96	21,56	104.60	21,56	216,62	21,97
2-Алкины	31,99	21,67	47,87	21,55	158,91.	21,71	253,82	21,69
3-Алкины	0,59	21,74	3,09	21,81	117,98	21,76	197,29	21,68

Lühiteateid * Краткие сообщения

Зависимость значений молекулярной рефракции R_D^{20} , показателей преломления n_{D}^{20} , плотностей d_{4}^{20} и индексов удерживания I (поли-этиленгликоль 4000 — ПЭГ 4000) от положения кратной связи в молекуле.

ВИДНО, ЧТО у соединений изученных гомологических рядов значения n_D²⁰ и d_{ι}^{20} , как и І, уменьшаются в порядке н-алкины > цис-алкены > транс-алкены.

Известно, что молекулярная рефракция является приближенной мерой оценки электронной поляризуемости молекул, которая, в свою очередь, характеризует роль дисперсионных сил при взаимодействии сорбата с сорбентом. Самое низкое R_{D}^{20} значение характерно ДЛЯ 1-изомера данного *н*-алкена, несколько выше — ДЛЯ цис-2-изомера. Среди н-алкенов с одинаковым

положением двойной связи молекулярная рефракция у транс-изомера всегда выше, чем у цис-изомера. В группе изученных соединений наименьшими значениями R²⁰ обладают н-алкины. Значит, величины R²⁰_D,

а следовательно, и поляризуемость уменьшаются в одном и том же порядке: транс-алкен > цис-алкен > н-алкин.

ЛИТЕРАТУРА

- Rang, S., Kuningas, K., Orav, A., Eisen, O. Capillary gas chromato-graphy of n-alkynes. 1. Retention indices. J. Chromatogr., 1976, v. 119, p. 451-460.
- Rang, S., Kuningas, K., Orav, A., Eisen, O. Capillary gas chromato-graphy of C₆—C₁₄ n-alkenes on polyphenylether and polyethylene glycol 4000. Chromatographia, 1977, v. 10, N 2, p. 55—64.
 Eisen, O., Orav, A., Rang, S. Identification of normal alkenes, cyclopent-enes and cyclohexenes by capillary gas chromatography. Chromatographia, 1972, v. 5, N 11, p. 229—239.
- 4. Эльвельт А. Исследование физико-химических свойств изомеров положения связи и конфигурации нормальных алкенов. Канд. дис. Таллин, 1977.
- Эльвельт А., Эйзен О. О физико-химических характеристиках изомерных и-децинов. Изв. АН ЭССР. Хим., 1978, т. 27, № 1, с. 54—56.
 Эльвельт А., Отса Э., Эйзен О. Физико-химические характеристики изо-мерных н-октинов и н-нонинов. Изв. АН ЭССР. Хим., 1979, т. 28, № 4, с. 287—289.

Институт химии Академии наук Эстонской ССР Поступила в редакцию 30/V 1980