ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 30 ХИМИЯ. 1981, № 1

https://doi.org/10.3176/chem.1981.1.02

УДК 66.048+662.756

Сайма САЛУСТЕ, Х. ЛУЙК, И. КЛЕСМЕНТ

ОПРЕДЕЛЕНИЕ ФРАКЦИОННОГО СОСТАВА СЛАНЦЕВЫХ СМОЛ МЕТОДОМ ИМИТИРОВАННОЙ ДИСТИЛЛЯЦИИ

В последние годы стало актуальным исследование сланцев с точки зрения органической геохимии. С целью характеристики исходного органического вещества сланцы в лабораторных условиях подвергают переработке различными методами, например, полукоксованию в реторте Фишера или деструктивной гидрогенизации в автоклаве, причем получаются смолы, количество которых варьирует от 1 до 20 г в зависимости от природы сланца. Определить фракционный состав смолы, пользуясь обычными методами, как, например, ректификацией или дистилляцией по Энглеру, из-за малого количества пробы не представляется возможным. Да и вообще получение кривых разгонки высококипящих продуктов названными методами практически невозможно. Нередко при исследовании необходимо оценить также количество нехроматографируемой части смолы.

Перспективным по получению кривых разгонки лабораторных и промышленных сланцевых продуктов является хроматографический метод имитированной дистилляции, который состоит в разделении смеси в короткой колонке в условиях программирования температуры. Выходящее из колонки количество вещества регистрируется с помощью интегратора. Линейная зависимость, существующая между временем

Рис. 1. Фрагменты хроматограмм, полученных от проверки микрошприцев. В изотермическом режиме: 1 — шприц МШ-I, объем пробы 0,8 MКЛ; 2 — шприц фирмы «Гамильтон», объем пробы 0,6 MКЛ. При скорости программирования температуры колонки 10 $2pa\partial/Mu$ H: 3 — шприц МШ-I, объем пробы 1,0 MКЛ. Цифры на пиках показывают порядок выхода компонентов из колонки.

ного из колонки [1].

Рис. 2. Калибровочный график. Скорость программирования температуры колонки: 1-2 град/мин, 2-4 град/мин, 3-10 град/мин. Цифры 6-24 показывают число атомов углерода в молекуле μ -парафина.

удерживания углеводорода в колонке и температурой его кипения, позволяет получить кривую разгонки, которая представляет собой зависимость между температурой кипения и выходом вещества, выделен-

Этим методом определен фракционный состав у ряда нефтепродуктов, температура кипения у которых до 550° С [2-7]. Во всех этих хроматографических экспериментах количественные данные получены методами внутренней нормализации (для смесей полностью выкипающих до 550°) или внутреннего стандарта (для смесей, содержащих нелетучий остаток с температурой кипения выше 550°), при которых не требуется знания количества (и объема) пробы, вводимой в колонку. При добавлении стандарта необходимы двукратное хроматографирование пробы (без стандарта и со стандартом) и соблюдение точности взвешивания малых количеств вещества.

Представляет интерес разработать простой метод имитированной дистилляции, который основывается на точном объеме пробы и удельном весе ее. При использовании такого метода расход пробы минимален, и в то же время отпадают все трудности, связанные с взвешива-

Результаты	имитированной дистилляции		эталонной	смеси
to robbins		нов С10-С24		

1. 3	Темпера-	Взято, вес. %	Получено, вес. %	Отклонение, %	
Компо-	тура ки- пения, °С			абсолютное	относи-
C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24	174,0 195,8 216,2 235,4 253,6 270,6 287,1 302,7 316,1 330,0 342,7 358,4 370,0 382,0 394,0	10,1 10,7 9,5 8,0 9,4 9,2 8,9 9,5 6,4 	9,6 10,9 9,9 7,9 9,8 9,2 8,7 9,9 6,1 4,1 4,5 2,9 4,9 1,6	$\begin{array}{c} -0.5 \\ +0.2 \\ +0.4 \\ -0.1 \\ +0.4 \\ 0 \\ -0.2 \\ +0.4 \\ -0.3 \\ \hline -0.2 \\ +0.1 \\ -0.1 \\ -0.1 \\ 0 \end{array}$	5,0 +1,9 +4,2 +1,2 +1,2 +4,3 0 -2,5 +4,2 -4,7 -4,8 +2,3 -3,3 -2,0 0

нием малых количеств проб, а также необходимость в двукратном хроматографировании, что значительно сокращает время анализа.

В настоящей работе хроматографирование исследуемых проб проводилось на газовом хроматографе «Хром-41», снабженном интегратором. Детектор — пламенно-ионизационный. Колонка: 3% OV 101 на хроматоне N-AW HMDS, 1,5 M \times 3 MM. Температура термостата программировалась в диапазоне $50\text{--}320^\circ$ со скоростью 2--10 zpad/Muh. Расход газа-носителя гелия составлял 20 Mn/Muh. Температура в испарителе поддерживалась на уровне $330\text{--}350^\circ$. Для ввода проб использовали шприцы типа МШ-1 и фирмы «Гамильтон» объемом в 1 MKn; объем вводимой пробы 0,8 MKn. Для компенсации дрейфа нулевой линии применяли систему параллельных колонок. Эффективность колонки по N-декану при 100° составляла 1560 тт.

В работе следует применять микрошприцы, которые позволяют точно дозировать объем пробы. Из шести шприцев типа МШ-1 требованиям настоящей работы отвечали два, смазывание которых апиезоном способствовало герметизации их. На рис. 1 представлены фрагменты хроматограмм проверки шприцев. Точность дозировки, оцениваемая по

высотам пиков, оказалась в пределах 3-6%.

Для калибровки и проверки воспроизводимости результатов опытов брали эталонную смесь μ -парафинов C_{10} — C_{24} . На рис. 2 представлены калибровочные графики этих смесей при различных скоростях программирования температур в колонке. Температуры выхода из колонки парафинов откладывались против температур кипения (таблица). При дистилляции смесей, выкипающих до 300° , температура в колонке повышалась со скоростью 2 град/мин, тогда как в случае смесей, выкипающих при более высоких температурах, — 4—10 град/мин.

В основу количественных расчетов хроматографического анализа взят факт, что величина сигналов пламенно-ионизационного детектора пропорциональна весовому содержанию компонентов в смеси. По литературным данным [2] известно, что ошибка при расчете хроматограмм без применения поправочных коэффициентов для парафино-нафтеновых и ароматических углеводородов остается в пределах 5%.

На рис. З представлены кривые разгонки эталонной смеси и неко-

Рис. 3. Кривые разгонки (интегральные хроматограммы (a)) и дифференциальные хроматограммы (b) эталонной смеси и сланцевых смол. (b) эталонная смесь (b) на пинава смола, (b) — сланцевая смола, (b) — сланцевая смола, (b) — сланцевая смола (удельный вес (b) — сланцевая (удельный

торых сланцевых смол. Для полностью выходящих из колонки смесей, выходы рассчитываются по методу внутренней нормализации: высота ординаты кривой дистилляции отвечает 100% (рис. 3, 2a). Для смесей же, неполностью выходящих из колонки, при расчетах пользовались данными для эталонной смеси n-парафинов C_{10} — C_{24} , а выход продуктов вычислялся по формуле:

Выход (вес. %)
$$=\frac{100X\partial_c}{E\partial_x}$$
,

где E — высота ординаты хроматограммы эталонной смеси (рис. 3, 1a), X — высота ординаты хроматограммы исследуемой смеси (рис. 3, 3), \mathcal{I}_c — удельный вес эталонной смеси, \mathcal{I}_x — удельный вес исследуемой смеси.

Точность результатов, полученных на основе данных интегральной

хроматограммы имитированной дистилляции эталонной смеси, можно оценить по таблице. Как видно, ошибка анализа остается в пределах

5%.

Результаты проведенных нами параллельных опытов с вышеприведенной точностью воспроизводимы для смол с удельными весами до 0.960 г/см3. Более вязкие смолы, из которых более 50% не выходит из колонки, поддаются дозированию по объему с большим трудом. Дистилляционные кривые для смол с удельным весом до 0,960 г/см3 характеризуют фракционный состав смол с температурами кипения до 400°.

Описанный метод позволяет определить также количество неот-

дистиллированной части смолы.

По температурам кипения на кривой дистилляции можно установить также длину цепей н-парафинов до С24.

ЛИТЕРАТУРА

1. Вигдерга уз М. С. Газовая хроматография как метод исследования нефти. М.,

1973, c. 199-207.

2. Соколова В. И., Берг Г. А., Шкловский Я. А., Ивченко Е. Г., Кузьмин В. И., Ярочкин В. Н. Имитированная дистилляция нефтепродуктов, выкипающих при температурах 50—550°С. — Химия и технология топлива и

выкипающих при температурах 50—550 °C. — Химия и технология топлива и масел, 1975, № 6, с. 47—50.

3. Wormen, J. C., Green, L. G. Simulated distillation of high boiling petroleum fractions. — Anal. Chem., 1965, v. 37, N 12, p. 1620—1621.

4. Green, L. G. Automated simulated distillation with HP 7600A chromatograph system. — Anal. Adv., 1969, v. 2, N 3, p. 2—9.

5. Philyaw, L. E., Krc, A. E., O'Neal, M. J. Gas chromatographic analysis of samples containing both volatile and nonvolatile organic components. — Anal. Chem., 1971, v. 43, N 6, p. 787—789.

6. Grow, T. H. Simulated distillation of narrow, high boiling hydrocarbon fractions. — Anal. Chem., 1973, v. 45, N 6, p. 987—989.

tions. — Anal. Chem., 1973, v. 45, N 6, p. 987—989.

7. Jackson, B. W., Judges, R. W., Powell, J. L. Boiling range distribution of petroleum with a short capillary column. — J. Chromatogr. Sci., 1976, v. 14, N 2, p. 49—51.

Институт химии Академии наук Эстонской ССР Поступила в редакцию 27/V 1980

Saima SALUSTE, H. LUIK, I. KLESMENT

PÕLEVKIVIÕLIDE FRAKTSIOONKOOSTISE MÄÄRAMINE IMITEERITUD DESTILLATSIOONI MEETODIL

On esitatud kuni 400 °C keevate õlide fraktsioonkoostise määramise lihtne gaasikromatograafiline meetod, mis põhineb proovi täpse mahu ja erikaalu kasutamisel. Keemistemperatuur on määratud kalibreerimisgraafiku abil, mis on esitatud etalonsegu n-parafiinide C10-C24 väljumis- ja keemistemperatuuri sõltuvusena.

Saima SALUSTE, H. LUIK, I. KLESMENT

IDENTIFICATION OF COMPOSITION OF SHALE OILS BY SIMULATED DISTILLATION METHOD

A simple gas chromatographic method based on the use of precise sample content and specific weight is presented for determining fraction composition of oils boiling up to 400 °C. The boiling point is determined by a calibration graph which is given as being dependent on exit boiling point of n-paraffins C_{40} — C_{24} of the standard test mixture.