EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. 30. KOIDE KEEMIA. 1981, NR. 1

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 30 ХИМИЯ. 1981, № 1

УДК 542.943: 547.56: 547.567.2: 547.681

И. ШЕВЧУК, Ууве КИРСО

ЭФФЕКТЫ ВЗАИМНОГО ВЛИЯНИЯ ПРИ СООКИСЛЕНИИ ФЕНОЛОВ, ХИНОНА И БЕНЗ(а)ПИРЕНА

(Представил М. Губергриц)

В состав вредных компонентов сточных вод топливно-химической и других видов промышленности входят фенолы и полициклические арены, которые обладают канцерогенными, канцерогенно-промоторными или токсическими свойствами. Для обезвреживания таких вод часто применяются окислительные методы очистки. Чтобы повысить эффективность этих методов, необходимы соответствующие данные о кинетике окислительного превращения вредных компонентов. Если закономерности деградации в различных процессах окисления у фенолов изучены подробно как с теоретической, так и с прикладной точки зрения, то у канцерогенных полициклических аренов в основном исследован только их метаболизм. Несмотря на возможное взаимное действие аренов и фенолов в процессе окисления, данные о совместном их окислении почти отсутствуют.

Целью настоящего исследования явилось изучение кинетики окислительного превращения фенола, пирокатехина, гидрохинона и хинона между собой и с одним типичным канцерогенным ареном — бенз (а)пиреном (БП) — для получения исходных данных по прогнозированию эффективности очистки от них сточных вод.

Методика и объекты исследования

В эксперименте использовались препараты фирмы «Flucka AG» (Швейцария): фенол (1-гидроксибензол), пирокатехин (1,2-дигидроксибензол), гидрохинон (1,4-дигидроксибензол), хинон (1,4-бензохинон) х.ч., дополнительно очищенные сублимацией. Содержание БП в растворе определялось спектрофотометрически по поглощению при 385 *нм* с учетом фона, содержание фенола [¹], пирокатехина [¹] и хинона [²] колориметрически по реакции с 4-аминоантипирином.

Окисление инициировалось полихроматическим излучением ртутной лампы СВД-120 в диапазоне выше 200—210 *нм* и с максимумом испускания при 365 *нм* [³]. Эксперимент проводился при $20\pm1^{\circ}$ С и рН 7 в 96%-ном водном этаноле и с реагентами 0,5, 1, 2, 3, 5, 7,5 и $10\cdot10^{-4}$ моль. Λ^{-1} в колбе Эрленмейера емкостью 100 мл с пришлифованной кварцевой пробкой и с магнитным перемешиванием в условиях барботажа кислородом.

Кинетические закономерности окисления

Для изученных реакций наблюдалось в основном линейное снижение концентрации реагента во времени (рис. 1). Следовательно, временной порядок окисления фенолов, хинона и БП нулевой, и подходящим кинетическим показателем реакции является ее стационарная скорость v. Скорость реакции определялась интегральным способом [4] с помощью метода наименьших квадратов на вычислительном устройстве 15 ВСМ-5. Концентрационный (истинный) порядок реакции окисления, рассчитанный по [4], для всех реагентов является дробной величиной (табл. 1), что, на наш взгляд, обусловлено сложным механизмом изученного процесса: часть фенолов и БП разлагаются в результате непосредственного взаимодействия кванта света с молекулой реагента, а значительная часть исходного вещества расходуется в результате взаимодействия с промежуточными продуктами первичного фотохимического превращения растворителя или растворенного кислорода [⁵].

Судя по скорости реакции (табл. 1), а также по временам полураспада ($\tau_{1/2}$), самая высокая скорость окисления была у бензохинона ($\tau_{1/2}=1,2-4$ мин), в 5—10 раз медленнее окислялись пирокатехин и гидроксибензол ($\tau_{1/2}=20-40$ и 50—110 мин соответственно). Ввиду почти полной локализации заряда в молекуле БП скорость окисления у него была в 100—300 раз ниже, чем у хинона ($\tau_{1/2}=240-1300$ мин).

Известно, что пирокатехин и хинон являются классическими про-

Рис. 1. Кинетика окисления пирокатехина 3·10⁻⁴ моль/л (1) и бенз (а) пирена 5·10⁻⁴ моль/л (2) раздельно и в смеси (а).

Таблица 1

Скорость	(v)	фотоин	иц	иированно	ого окис.	тения	фе	но	лов	, X	инон	la
и бена	3(a))пирена	B	96%-ном	этаноле	при	20°	С	И	Hc	7	

Реагент	v·10-7 моль·л-	Концентрацион- ный порядок		
A COLOR MORE AND	1	5	10	реакции, пе
Фенол Пирокатехин Хинон Бенз (а) пирен	$\begin{array}{c} 0,53 \pm 0,02 \\ 0,46 \pm 0,03 \\ 5,18 \pm 0,19 \\ 0,036 \pm 0,0015 \end{array}$	1,50 $1,74\pm0,11$ $14,97\pm0,5$ $0,051\pm0,002$	$\begin{array}{c} 2,00 \pm 0,25 \\ 2,22 \pm 0,21 \\ 21,3 \pm 1,3 \\ 0,068 \pm 0,007 \end{array}$	$0,60,67\pm0,070,62\pm0,020,28\pm0,01$

Рис. 2. Влияние концентрации добавки (a — фенола, δ — пирокатехина, e гидрохинона, e — хинона, ∂ — бенз (а)пирена) на относительную скорость окисления фенола (I), пирокатехина (2) и хинона (3); t = =20° C, pH 7.

дуктами окисления фено-Учитывая тот факт, ла. что токсичность пирокатехина, гидрохинона И особенно хинона относительно теплокровных жи-BO много pa3 вотных превышает токсичность исходного фенола [6], представляет интерес выяснить возможность их накопления при окислении гидроксибензола. Судя по скорости превращения (табл. 1), можно предпо-

ложить, что накапливаться в растворе, особенно при высоких концентрациях фенола, может пирокатехин, а скорость расходования бензохинона на два порядка выше скорости его образования.

Хорошо известно, что многие фенолы являются ингибиторами свободнорадикальных реакций окисления [7], поэтому следует ожидать протекания конкурентных процессов при их совместном окислении, что и подтверждается экспериментом (рис. 2; табл. 2). Скорость окисления основного реагента снижается тем больше, чем выше концентрация (молярная доля) добавки. Особенно сильно БП уменьшает скорость окисления фенолов и хинона (рис. 2, 2*д* и 3*д*). Одной из причин такого явления может быть эффект экранирования, наблюдаемый в результате поглощения излучения добавкой. Так, например, коэффициент молярной экстинкции у БП в области 260—270 *нм* в 20—40 раз больше, чем у фенолов [⁸]. Кроме того, двухатомные фенолы и хинон окисляются с большей скоростью, чем гидроксибензол. Вероятно, за ингибирующее действие двухатомных фенолов и хинона могут быть ответственными продукты их окисления.

Сходство во влиянии гидрохинона и хинона на окисление фенола

Таблица 2

оенз(а) пирена в 96 % - ном этаноле ($t = 20^{\circ}$ С, рН 7)									
Добавка	υ _{БП} /υ _{БП+добавка} при концентрационном соотношении с _{БП} /с _{добавка} .								
	0,20	0,33	0,50	1,0	1,7	2,0	5,0		
Фенол Хинон Пирока-		0,64	0,65±0,14 0,53±0,04	0,39 0,66±0,05	=	$1,17 \pm 0,14 \\ 0,84 \pm 0,06$			
техин	-		1,11±0,07	1,05±0,14	1,06±0,14	or n <u>rr</u> eite	0,94±0,09		

Влияние добавки на скорость фотоинициированного окисления бенз(а) пирена в 96%-ном этаноле (t=20° C, pH 7)

Таблица 3

Соотношение изменения относительных скоростей окисления компонентов ($v_{\text{основной}} - v_{\text{основной с добавкой}}$) : $v_{\text{основной в бинарных и тройных смесях}}$ (растворитель — этанол, рН 7,0 и $t = 20^{\circ}$ С)

Реагент пр 1.10-	ои концентрации -4 моль · л ⁻¹	и основной — и основной+добавка	Наблюдаемый		
Основной	Добавочной	v основной	эффект		
Фенол	Хинон БП Хинон+БП	$\begin{array}{c} 0,18 \pm 0,04 \\ 0,58 \pm 0,05 \\ 0,63 \pm 0,06 \end{array}$	Антагонизм		
Хинон	Фенол БП Фенол+БП	$\begin{array}{c} 0,07\pm 0,04\\ 0,62\pm 0,03\\ 0,67\pm 0,05 \end{array}$	Аддитивность		
	Фенол Хинон Фенол+хинон	$\begin{array}{c} -0,09 \pm 0,05 \\ -0,20 \pm 0.04 \\ -0,20 \pm 0,04 \end{array}$	Антагонизм		

позволяет предполагать, что в обоих случаях действует один и тот же продукт их окисления — оксихинон [9, 10]. Это подтверждается хорошим совпадением кривых концентрационной зависимости (рис. 2, 1*в*, 1*г*).

В биосфере и в стоках можно ожидать разное соотношение фенолов и БП. Например, в свежих сланцехимических стоках концентрация фенолов в несколько раз превышает концентрацию БП [¹¹]. Однако через некоторое время ввиду устойчивости БП к окислению (табл. 1), концентрация его может даже превышать таковую у фенолов. Поэтому нами исследовано влияние фенолов на скорость превращения БП при различных соотношениях реагентов (табл. 2). Добавки фенола и хинона ускоряют окислительные превращения БП, причем с ростом доли хинона временной порядок реакции окисления БП увеличивается и приближается к первому, что указывает на усиление роли темневых реакций в исчезновении (окислении) БП. Поскольку скорость окисления хинона на два порядка выше, чем скорость окисления БП, возможно, что продукты окисления хинона индуцируют темневое окисление БП.

Исследование деградации реагентов в тройных смесях свидетельствуют о том, что относительно фенола и БП другие компоненты оказывают антагонистическое действие, т. е. эффекты ингибирования фенола и БП здесь меньше ожидаемых при окислении в бинарных смесях (табл. 3). Явление аддитивности определено нами при совместном окислении хинона с фенолом и БП. Отметим, однако, что некоторыми авторами [¹²] установлено наличие синергического эффекта при действии пространственно-затрудненных фенолов с хиноном в случае окисления углеводородов только в воздухе, а не в кислороде.

Таким образом, нами установлено, что окисление смесей из фенола, двухатомных фенолов, *n*-бензохинона и БП (или при образовании таких смесей в процессе окисления) сопровождается замедлением деградации фенолов и хинона. При этом хинон, гидрохинон и пирокатехин являются более токсичными, чем исходный фенол. Следовательно, эффективность обезвреживания фенолов и БП в смесях существенно ниже ожидаемого при окислении индивидуальных веществ.

Выводы

1. Скорости фотоинициированного окисления *п*-бензохинона, пирокатехина, фенола и бенз (а) пирена существенно различаются. Их соотношение в относительных единицах 300:35:30:1. 2. При соокислении фенолов и хинона в бинарных и тройных смесях с канцерогенным бенз (а) пиреном выявляется эффект взаимного ингибирования.

ЛИТЕРАТУРА

- Кирсо У. Определение различных фенолов реакцией с 4-аминоантипирином. Изв. АН ЭССР. Хим. Геол., 1977, т. 26, № 1, с. 22—27.
 Thielemann, H. Zum Nachweis von p-Benzochinon mit 1-Phenyl-2,3-Dime-
- thyl-4-Aminopyrazolon-(5). Pharmazie, 1969, Bd. 24, N 8, S. 483-484.
- 1969, Вd. 24, N 8, S. 483—484.
 3. Агроскин Л. С. Сравнение яркостей некоторых источников света для ультра-фиолетовой микроскопии. Биофизика, 1957, т. 2, № 4, с. 518—519.
 4. Лейдлер К. Кинетика органических реакций. М., 1966.
 5. Кирсо У. Э.-Р. Реакционная способность фенолов в процессах окисления. Автореф. дис. докт. хим. н. Черноголовка, 1978.
 6. Велдре И. А., Кирсо У. Э. Изменение токсических свойств фенолов в про-цессе их окисления. Гиг. и санит., 1976, № 1, с. 20—22.
 7. Эмануэль Н. М., Денисов Е. Т., Майзус З. К. Цепные реакции окисле-ния углеводородов в жидкой фазе. М., 1965.
 8. Friedel, R. A., Оссьйи. М. Шітаviolet Spectra of Aromatic Compounds.

- Friedel, R. A., Orchin, M. Ultraviolet Spectra of Aromatic Compounds. New York London, 1951.
 Bruce, J. M. Light-induced reactions of quinones. Quart. Rev. 1967, p.
- 405-424.
- Ельцов А. В., Студзинский О. П., Гребенкина В. М. Инициированные светом реакции хинонов. Усп. хим., 1977, № 2, с. 185—227.
 Велдре И. А., Лахе Л. А., Арро И. Х. О содержании 3,4-бензпирена в сточных водах предприятий сланцевой промышленности. Гиг. и санит.,
- 1965, № 11, с. 104—105. 12. Белова Л. Н., Карпухина Г. В., Майзус З. К., Розанцев Э. Г., Эмануэль Н. М. Синергизм антиокислительного действия ароматических аминов и фенолов в смесях с акцепторами R⁻-радикалов — нитроксильными радикалами, хинонами. — Докл. АН СССР, 1976, т. 231, № 2, с. 369—372.

Институт химии Академии наук Эстонской ССР Поступила в редакцию 18/IV 1980

I. ŠEVTŠUK, Uuve KIRSO

FENOOLIDE, KINOONI JA BENSO(a)PÜREENI VASTASTIKUNE MÕJU KOOSOKSÜDEERIMISEL

p-bensokinooni, pürokatehhiini, fenooli ja benso(a)püreeni (kaks esimest on nii fenoolid kui ka oksübensooli laguproduktid) fotoinitsieeritud oksüdeerimise kiirused moodus-tasid artiklis esitatud katsete põhjal suhtarvudes järgmise rea: 300:35:30:1. Nime-tatud ainete koosoksüdeerimisel kaksik- ja kolmiksegudes toimub vastastikune inhi-bereimiseriilused turbet in kaksikbeerimine, mille ulatus oleneb teise komponendi keemilisest struktuurist ja kogusest.

1. SHEVCHUK, Uuve KIRSO

THE EFFECT OF COOXIDATION ON PHENOLS, QUINONE AND BENZO(a)PYRENE

The rates of photoinduced oxidation of *p*-benzoquinone, catechol, phenol and benzo(a)pyrene (the first two are degradation products of phenol) decreases in the order 300:35:30:1. In the processes of cooxidation of these compounds in binary and tertiary mixtures, inhibition effects were determined, which depend on the chemical structure and amount of the component added.