EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. 29. KÖIDE KEEMIA. 1980, NR. 1

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 29 ХИМИЯ. 1980, № 1

https://doi.org/10.3176/chem.1980.1.05

УДК 541.11

М. КУУС, Л. КУДРЯВЦЕВА, О. ЭЙЗЕН

ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА СМЕСЕЙ *н*-ОКТАНА С ИЗОМЕРАМИ *н*-ОКТЕНА

1. Теплоты смешения

Индивидуальные изомеры *н*-алкенов, получаемые путем селективного гидрирования соответствующих *н*-алкинов [¹], могут быть очищены мегодом препаративной газовой хроматографии (ПГХ); производительность хроматографирования в большой степени зависит от предварительной очистки этих изомеров ректификацией. Для выявления оптимальных условий ректификации необходимы данные о равновесии жидкость—пар и теплотах смешения в системах, содержащих изомеры *н*-алкенов.

До настоящего времени парожидкостное равновесие исследовалось лишь в системах, содержащих n-1-алкены [2 -4]. Данные о теплотах смешения n-алканов и четыреххлористого углерода с четырьмя изомерами n-гексена и n-гептена при температуре 298,15 K приводятся в [5 , 6]. Полученные результаты свидетельствуют о том, что степень отклонения от свойств идеальных растворов в исследованных смесях зависит от положения двойной связи в молекуле n-алкена и ее конфигурации [5 , 6]. Значения теплот смешения указывают на то, что аппроксимация равновесия жидкость—пар в системах n-алкен—n-алкан с помощью модели идеальных растворов, которой иногда пользуются в расчетах, является лишь грубым приближением.

В первой части настоящей работы приведены изотермические данные о теплотах смешения в системах, образованных *н*-октаном с позиционными и конфигурационными изомерами *н*-октена, во второй части — результаты исследования равновесия между жидкостью и паром в этих системах при четырех заданных давлениях (760, 600, 400, 200 *мм рт. ст.*). В нашу задачу входило также увязать между собой эти данные и вывести уравнения зависимости избыточных термодинамических функций от

концентрации исследованных смесей и температуры.

н-1-Октен был приготовлен гидрогенизацией 1-октина в присутствии сульфата аммония [7]. *транс*-Изомеры *н*-октенов получены восстановлением *н*-октинов в жидком аммиаке в присутствии металлического натрия [1], *цис*-изомеры — в присутствии водорода и катализатора Р-2 [8]. Исходные *н*-октины синтезированы алкилированием ацетилена в жидком аммиаке [1].

Предварительная очистка n-алкенов проведена методом ректификации на колонке эффективностью 50 ТТ с тефлоновым ротирующим устройством.* Окончательная очистка осуществлена методом ПГХ на приборе ПГК-9 в колонках из нержавеющей стали (длина 3—6 m, внутренний диаметр 14 или 18 mm; твердый носитель хроматон N-AW 0,315—0,4 mm или хезасорб AW той же зернистости). В качестве жидкой фазы

Колонка сконструирована в секторе физико-химических исследований Института химии АН Эстонской ССР В. Михкельсоном.

Таблица 1

Физико-химические характеристики веществ и константы уравнения Антуана

$$\log P_i (\Pi a) = A - \frac{B}{T(K) + C}$$

Ramana	та, %	d_4^{20}	n _D ²⁰	J., °C	Константы уравнения Антуана		
Вещество	Чистота,	<i>u</i> ₄	n _D	Т. кип.,	A	В	C
н-Октан	99,99	0,7026	1,39761	125,81	9,07152	1371,659	-61,591
н-1-Октен [9]	99,98	0,7154	1,40884	121,33	9,04386	1350,353	-60,225
н-2-цис-Октен	99,20	0,7246	1,41600	125,63	9,04771	1353,920	-63,817
н-2-транс-Октен	98,90	0,7195	1,41320	125,11	9,13206	1405,510	-57,638
н-3-цис-Октен	99,92	0,7214	1,41435	122,89	9,07629	1365,520	-60,576
н-3-транс-Октен	99,98	0,7160	1,41283	123,29	9,07680	1367,280	-60,586
н-4-цис-Октен	99,90	0,7219	1,41505	122,67	9,08203	1375,803	-58,308
н-4-транс-Октен	99.98	0.7150	1,41213	122,35	9,12078	1395.081	-56.482

использовались: для τ ранс-изомеров — полиэтиленгликоль 4000 или апьезон L, для μ ис-изомеров — $AgNO_3$ + 1,6-гександиол, для 1-октена — 1,2,3- τ рис (2-цианэтокси)-пропан (20% от веса твердого носителя). Октан был очищен ректификацией.

Чистота веществ проверена на хроматографе Chrom 41 (ЧССР) с использованием капиллярных колонок (длина 50 м, внутренний диаметр 0.25 мм) со скваланом и полиэтиленгликолем 6000. Чистота μ uc-изомеров проверялась в насадочной колонке с $AgNO_3 + 1$,6-гександиол (длина 3,7 м, внутренний диаметр 3 мм) и в капиллярной колонке со скваланом.

Степень чистоты и физико-химические показатели веществ приведены в табл. 1. Здесь же даны значения констант уравнения Антуана, рассчитанные по температурам кипения веществ, измеренным в полумикро-эбуллиометре [9] при четырех заданных давлениях.

Теплоты смешения определены в дифференциальном автоматическом микрокалориметре ДАК-1-1 (конструкция реакционного сосуда описана в [10]). Ошибка определения теплот смешения не превышала 2% для значений теплот смешения не выше 850 Дж/моль. Работа калориметра была проверена на системах бензол—толуол и бензол—четыреххлористый углерод для 298,15 K, которые близки к изучаемым системам по тепловым эффектам и для которых существуют надежные экспериментальные данные [11, 12]. Сопоставление результатов измерения дано на рис. 1 и 2.

Кроме указанного, был проведен ряд контрольных измерений для систем *н*-1-гексен—*н*-гексан и *н*-1-гептен—гептан при 298,15 К. Для первой системы полученные данные хорошо согласуются с результатами [⁵]. Для второй системы были получены следующие значения теплот смешения *н*-1-гептена с *н*-гептаном для 298,15 К: (*HE*, Дж/моль):

Эти значения оказались ниже полученных в [5].

Результаты измерения теплот смешения *н*-октана с *н*-1-октеном, *н*-3--*транс*-октеном и *н*-4-*транс*-октеном во всем концентрационном интервале (табл. 2) скоррелированы однопараметрическим уравнением

$$H^E = a_0 x_1 x_2, \tag{1}$$

Таблица 2 Теплоты смешения H^E (Дж/моль) в системах и-алкен(1)—и-алкан(2)

298,15 K		308,15 K			318,15 K				
<i>x</i> ₁	<i>Н</i> Е эксп	НЕ расч	<i>x</i> ₁	НЕ эксп	НЕ расч	<i>x</i> ₁	Н _Е эксп	НЕ расч	
н-1-октен (1) — октан (2)									
0,121 0,240 0,247 0,376 0,402 0,417 0,489 0,493 0,502 0,519 0,661 0,734 0,765 0,884	17,9 31,9 34,0 42,4 45,4 44,0 42,3 44,7 46,6 44,6 44,5 41,8 30,8 18,5 =180; σ=	19,1 32,8 33,5 42,2 43,3 43,8 44,6 45,0 45,0 45,0 44,9 40,9 40,3 35,1 32,4 18,5 =1,11	0,113 0,124 0,250 0,398 0,411 0,443 0,455 0,481 0,694 0,601 0,602 0,626 0,754	17,2 19,3 32,9 39,9 40,9 41,1 43,7 43,6 42,4 39,9 39,6 39,2 33,1	17,2 18,7 32,3 41,0 41,6 42,4 42,7 42,9 41,5 41,2 40,3 31,9 = 1,25	$0,136$ $0,251$ $0,415$ $0,444$ $0,498$ $0,509$ $0,521$ $0,531$ $0,586$ $0,769$ $0,885$ $a_0 = 1$	19,7 31,6 39,2 42,0 40,7 42,1 38,8 40,5 40,5 30,1 17,3 164; $\sigma = 1$	19,3 30,8 39,8 40,5 41,0 41,0 40,9 40,8 39,8 29,1 16,7	
			транс-3	-октен(1)-	—октан (2)				
0,140 0,264 0,420 0,504 0,507 0,610 0,758 0,877 a ₀	26,7 45,3 54,6 54,9 55,1 52,1 41,7 24,4 =220; σ=	26,4 42,7 53,6 55,0 55,0 52,3 40,3 23,7 = 1,22	0,136 0,252 0,260 0,414 0,417 0,462 0,481 0,487 0,522 0,537 0,613 0,712 0,759 0,888 a ₀	23,6 40,6 41,3 49,4 49,4 52,5 51,9 52,3 50,6 49,3 40,6 38,7 21,9 = 209; σ=	24,6 39,4 40,2 50,7 50,8 52,0 52,0 52,2 52,1 52,0 49,6 42,9 38,2 20,8 =1,18	$\begin{array}{c} 0,125 \\ 0,249 \\ 0,427 \\ 0,439 \\ 0,506 \\ 0,515 \\ 0,562 \\ 0,569 \\ 0,593 \\ 0,769 \\ 0,879 \\ a_0 = \end{array}$	$\begin{array}{c} 20,2\\ 38,5\\ 47,8\\ 47,8\\ 48,5\\ 49,7\\ 49,0\\ 47,3\\ 48,5\\ 47,8\\ 36,1\\ 20,1\\ 198; \sigma\!=\!0 \end{array}$	21,7 37,0 48,5 48,5 49,5 49,5 48,5 48,5 47,8 35,2 21,1	
<i>транс-</i> 4-октен(1)—октан(2)									
0,144 0,259 0,424 0,427 0,464 0,487 0,512 0,582 0,585 0,620 0,720 0,873 a ₀	26,4 46,3 59,9 61,9 62,2 64,0 63,6 61,4 60,3 57,3 51,2 27,9 = 243; σ=	30.0 46,6 59,3 59,3 60,2 60,7 60,7 59,1 59,0 57,3 49,0 26,9 = 1,69	0,122 - 0,262	21,7 43,5 53,6 53,6 55,7 54,8 54,4 57,3 58,2 53,1 42,7 224,3 = 226; σ=	24,2 43,7 54,6 54,9 56,1 56,2 56,4 56,2 53,5 40,7 26,6 = 1,7	$0,156$ $0,270$ $0,378$ $0,412$ $0,458$ $0,500$ $0,502$ $0,523$ $0,525$ $0,599$ $0,747$ $0,833$ $a_0 = 5$	$28,1$ $41,0$ $49,4$ $49,5$ $51,5$ $52,3$ $50,5$ $51,9$ $50,3$ $39,7$ $31,4$ $209; \sigma = 1$	27,5 41,2 49,1 50,6 51,9 52,3 52,1 52,1 50,2 39,5 29,1	

значение константы (табл. 2) в котором определено по теплоте смешения смеси, близкой к эквимолярной. Воспроизводимость экспериментальных данных с помощью результатов расчета по уравнению (1) оценивалась критерием (табл. 2)

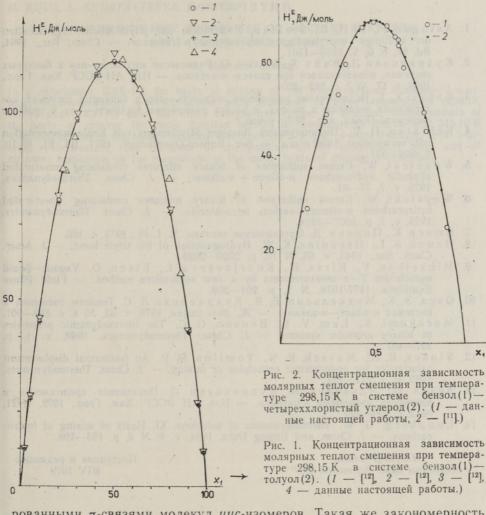
Таблица 3

Теплоты смешения x = 0.5 при температуре 298,15 K в бинарных системах

The state of the s	Теплоты смешения, Дж/моль						
Система	i=1	$i=1$ μuc $i=2$ τpc		i=3			
н-i-Гексен—н-гексан н-i-Гептен—н-гептан н-i-Октен—н-октан н-i-Октен—н-гептан н-i-Октен—н-гексадекан	61 [⁵] 51 45 40 [¹⁴] 164 [¹⁴]	75 [⁵] 63 [⁵] 58	54 ^[5] 46 ^[5] 41	63 [⁵] 67 [⁵] 55			

$$\sigma_{H^E} = \sqrt{\sum_i (H^E_{\text{əken}} - H^E_{\text{pacy}})^2/n - 1},$$

где п — число экспериментальных точек.


Из-за ограниченного количества остальных изомеров и-октена теплоты смешения их с октаном были измерены лишь в смесях, близких к эквимолярным. Результаты измерения \dot{H}^{E} (Дж/моль) этих систем и рассчитанные на их основе значения констант уравнения (1) приведены ниже.

пиже.										
			цис-3-Окт	ен (1) — о	ктан(2)					
T/K	0,464 298,15 56,5	298,15	0,493 298,15 56,5	298,15	298,15	0,490 318,15 49,6	318,15			
				(a	$_0 = 230)$	($a_0 = 198$)			
<i>цис-</i> 4-Октен (1) — октан (2)										
T/K	298,15	298,15	0,618 298,15 63,2	318,15	318,15	318,15				
			$(a_0 = 266)$			$(a_0 = 232)$				
<i>цис-</i> 2-Октен(1)—октан(2)										
T/K	298,15	298,15	0,376 318,15 43,9	318,15	STEP STEP STEP STEP STEP STEP STEP STEP					
		$(a_0 = 231)$		$(a_0 = 208)$						
<i>транс-</i> 2-Октен(1)—октан(2)										
	0,514 298,15		3							

$$x_1$$
 0,514 0,488 T/K 298,15 318,15 $H_{_{\mathrm{2RCII}}}^E$ 40,7 36,8

$$(a_0 = 163) \quad (a_0 = 147)$$

Из приведенных данных следует, что теплоты смешения н-октана с цис-изомерами н-октена выше, чем с транс-изомерами, при одинаковом положении двойной связи в молекуле изомера. Это различие, видимо, можно объяснить более сильным взаимодействием между менее экрани-

рованными π-связями молекул цис-изомеров. Такая же закономерность характерна для плотностей и показателей преломления цис- и транс-октенов [13]. Однако, в отличие от изменения этих свойств в зависимости от положения двойной связи в молекуле изомера, теплота смешения цис-2-октена с октаном не является максимальной, а имеет некоторое промежуточное значение. Теплоты смешения октана с изомерами н-октена можно расположить в ряду: цис-4>транс-4>цис-3>цис-2>транс-3>>1-октен>транс-2. Ясно, что с перемещением двойной связи к центру молекулы изомера теплота смешения его с н-октаном увеличивается.

В заключение сопоставим некоторые из полученных результатов для x=0,5 и 298,15 K с данными для других систем типа n-алкен—n-алкан (табл. 3) и отметим следующее. Из двух факторов, увеличивающих теплоту смешения изомеров n-алкенов с n-алканами (уменьшение числа атомов углерода в молекуле n-алкена и увеличение их в молекуле n-алкана), первый влияет на теплоту смешения в большей степени. Вследствие этого величина теплоты смешения в системах с одинаковым числом атомов углерода в молекулах обоих компонентов возрастает с его уменьшением. Поэтому значение теплоты смешения n-гексена с n-гексаном n

ЛИТЕРАТУРА

Asinger, F., Fell, B., Steffan, J. Synthese und physikalische Eigenschaften der stellungs- und konfigurationsisomeren n-Undecene. — Chem. Ber., 1964, Bd. 97, N 6, S. 1555—1561.

2. Кудрявцева Л., Вийт Х., Эйзен О. Равновесие жидкость-пар в бинарных

системах, образующихся при синтезе н-алкенов. — Изв. АН ЭССР. Хим. Геол., 1968, т. 17, № 3, с. 242—250.

3. Кирсс X. X. Исследование равновесия жидкость—пар в бинарных системах, содержащих н-алкены и тиофен, и расчет равновесия жидкость-пар в тройных

системах. (Канд. дис., 1975; рукоп.)

4. Kehiaian, H. V. Thermodynamik flüssiger Mischungen von Kohlenwasserstoffen mit verwandten Substanzen. — Ber. Bunsen-Gesellschaft, 1977, Bd. 81, N 10,

S. 908-921.

Woycicki, W. Excess enthalpies of binary mixtures containing unsaturated

aliphatic hydrocarbons n-alkene + n-alkane. — J. Chem. Thermodynamics, 1975, v. 7, 77—81.
ycicki, W. Excess enthalpies of binary mixtures containing unsaturated hydrocarbons n-alkenes—carbon tetrachloride. — J. Chem. Thermodynamics,

hydrocarbons n-alkenes—carbon tetrachloride. — J. Chem. Thermodynamics, 1975, v. 7, p. 1007—1014.
7. Бюлер К., Пирсон Д. Opганические синтезы. Ч. І. М., 1973, с. 126.
8. Неппе, А. L., Greenlee, К. W. Hydrogenation of the triple bond. — J. Amer. Chem. Soc., 1943, v. 65, N 10, p. 2020—2023.
9. Мінкеlson, V., Кітss, Н., Киdгјаvzeva, L., Еіsen, О. Vapour—liquid equilibrium Т—х measurements by a new semi-micro method. — Fluid Phase Equilibria, 1977/1978, N 1, p. 201—209.
10. Отса Э. К., Михкельсон В. Я., Кудрявцева Л. С. Теплоты смешения в системах н-алкан—н-алкин-1. — Ж. физ. химии, 1979, т. 53, № 4, с. 899—901.
11. Мигакаті, S., Lат, V. Т., Вепson, G. С. The thermodynamic properties of binary aromatic systems. — J. Chem. Thermodynamics, 1969, v. 1, p. 397—407.

- 397—407.

 12. Stokes, R. H., Marsch, K. N., Tomlins, R. P. An isothermal displacement calorimeter for endothermic enthalpies of mixing. J. Chem. Thermodynamics, 1969, v. 1, 211—221.

 13. Эйзен О., Эльвельт А., Кудрявцева Л. Показатели преломления и плотности изомерных н-октенов. Изв. АН ЭССР. Хим. Геол., 1972, т. 21,
- № 3, c. 220-223.

14. Lundberg, G. W. Thermodynamics of solutions. XI. Heats of mixing of hydrocarbons. — J. Chem. and Engng Data, 1964, v. 9, N 2, p. 193—198.

Институт химии Академии наук Эстонской ССР

Поступила в редакцию 4/IV 1979

M. KUUS, L. KUDRJAVTSEVA, O. EISEN

KAKSIKSEGUDE n-OKTAAN — n-OKTEENI ISOMEERID TERMODÜNAAMILISED OMADUSED

1. Segunemissoojused

Artiklis on toodud segunemissoojuste mõõtmise tulemused kalorimeetriga DAK-1-1 erinevatel temperatuuridel. Binaarse segu üheks komponendiks on *n*-oktaan, teiseks *n*-okteeni geomeetriline või asendiisomeer. Kõigi kaksiksegude puhul ilmneb endotermiline soojusefekt, mis on seda suurem, mida madalam on mõõtmistemperatuur ja mida lähemal on kaksikside n-okteeni molekulis ahela keskkohale. Katseandmed on korreleeritud üheparameetrilise võrrandiga.

M. KUUS, L. KUDRYAVTSEVA, O. EISEN

THERMODYNAMIC PROPERTIES OF *n*-OCTANE MIXTURES WITH ISOMERS OF *n*-OCTENE

1. Heats of mixing

In a calorimeter DAK-1-1 the heats of mixing of the binary system n-octane+1-n-octene, +3-trans-octene, +4-trans-octene were measured at three temperatures (298.15, 308.15 and 318.15 K) over the whole composition range. In addition, measurements of the heats of mixing for mole fraction $x \approx 0.5$ at temperatures 298.15 and 318.15 K were carried out in the binary systems n-octane+cis-2-octene, +trans-2-octene, +cis-3-octene, +cis-4-octene. The influence of the position of the unsaturated bond and of cis-trans isomerism on the magnitude of the molar heats of mixing is described.