EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. 29. KÕIDE KEEMIA. 1980, NR. 1

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 29 ХИМИЯ. 1980, № 1

https://doi.org/10.3176/chem.1980.1.04

УДК 547.313: 543.544.45

Анне ОРАВ, Кай КУНИНГАС, Сильвия РАНГ, О. ЭЙЗЕН

КАПИЛЛЯРНАЯ ГАЗОВАЯ ХРОМАТОГРАФИЯ *н*-АЛКЕНОВ С₁₀-С₁₃ НА 1,2,3-*трис*(2-ЦИАНЭТОКСИ)ПРОПАНЕ

В настоящей статье приведены индексы удерживания и рассмотрены их корреляции с молекулярной структурой *н*-алкенов C₁₀—C₁₃ на высокополярном 1,2,3-*трис* (2-цианэтокси) пропане (ТЦЭП). Работа является продолжением цикла исследований [¹⁻³], проводимых с целью изучения применения капиллярной газовой хроматографии для разделения и установления структуры изомеров моноолефинов.

Экспериментальная часть

Опыты проводились на хроматографе Хром-2 с пламенно-ионизационным детектором. Капиллярная колонка (нерж. сталь, 0,25 мм \times 100 м) была покрыта с помощью динамического метода. Давление газа-носителя (гелия) на входе в колонку составляло $\approx 1,7$ кг/см², объемная скорость 0,16—0,20 мл/мин, распределение потоков на входе в колонку 1:200. Температура колонки измерялась с точностью 0,2 °С. Эффективность колонки при 80° по *транс*-2-додецену составляла $\approx 80\,000$ ТТ. Времена удерживания *н*-алкенов измерялись в течение одного месяца. Характеристики колонки за это время не изменились.

Мертвый объем колонки и индексы удерживания (I) рассчитаны известным методом [4, 5].

Воспроизводимость измерений, рассчитанная как средняя квадратичная ошибка по пяти (не менее) измерениям при каждой температуре, составляла в среднем ±0,5 ед. (единиц индекса удерживания).

Значения *I* для *н*-алкенов C₁₀—C₁₃ и температурные инкременты индекса 10($\delta I/\delta T$) приведены в табл. 1.

Обсуждение результатов

Изменение индексов удерживания *н*-алкенов в зависимости от длины цепи и температуры. Значения I *н*-алкенов $C_{10}-C_{13}$ увеличиваются линейно с увеличением числа атомов углерода *n* в молекуле согласно уравнению (1): I = a + bn (константы *a* и *b* см. в табл. 2). Значения *b* соответствуют инкрементам I_{CH_2} (вклад метиленовой группы в индекс удерживания) и уменьшаются по мере перемещения двойной связи к центру молекулы (табл. 3). На ТЦЭП величины I_{CH_2} *н*-алкенов $C_{10}-C_{13}$ на 4—7 *ед.* меньше, чем на менее полярных жидких фазах (полифени-

19

Таблица 1

<i>н</i> -алкенов C ₁₀ —C ₁₃						
VETEROTODOT	T	10(81/87)				
er mebodopod	60	70	80	- 10(01/01)		
-Децен гранс-2-Децен цис-2-Децен гранс-3-Децен цис-3-Децен гранс-4-Децен цис-4-Децен гранс-5-Децен цис-5-Децен	$\begin{array}{c} 1079,2\\ 1088,2\\ 1111,1\\ 1065,5\\ 1082,8\\ 1059,0\\ 1079,2\\ 1062,4\\ 1077,6\end{array}$	$\begin{array}{c} 1084,8\\ 1093,8\\ 1118,5\\ 1069,9\\ 1090,6\\ 1063,5\\ 1086,4\\ 1066,0\\ 1085,5\\ \end{array}$	1090,6 1099,4 1126,3 1073,7 1096,9 1066,6 1091,0 1068,9 1089,7	5,7 5,6 7,7 4,1 7,0 3,8 5,9 3,3 5,8		
1-Ундецен гранс-2-Ундецен 4ис-2-Ундецен гранс-3-Ундецен чис-3-Ундецен гранс-4-Ундецен 4ис-4-Ундецен гранс-5-Ундецен 4ис-5-Ундецен 4ис-5-Ундецен	1172,1 1181,5 1205,6 1159,8 1176,2 1152,4 1169,6 1154,6 1154,6 1168,5	1180,0 1188,0 1211,7 1165,3 1183,7 1158,0 1176,4 1158,2 1175,5	1185,6 1193,8 1219,2 1169,0 1190,0 1161,7 1183,5 1163,0 1181,5	6,8 6,2 6,8 4,6 7,0 4,7 7,0 4,2 6,5		
1-Додецен <i>гранс</i> -2-Додецен <i>цис</i> -2-Додецен <i>гранс</i> -3-Додецен <i>цис</i> -3-Додецен <i>гранс</i> -4-Додецен <i>цис</i> -4-Додецен <i>цис</i> -5-Додецен <i>цис</i> -5-Додецен <i>цис</i> -6-Додецен <i>цис</i> -6-Додецен	4.114-1 2.2.2.2.2 2.2.2.2.2 2.2.2.2.2 2.2.2.2.2 2.2.2.2 2.2.2.2 2.2.2.2 2.2.2.2 2.2.2.2 2.2.2.2 2.2.2.2 2.2.2.2 2.2.2.2 2.2.2.2 2.2.2.2 2.2.2.2 2.2.2.2 2.2.2.2.2 2.2.2.2.2 2.2.2.2.2 2.	1273,61281,81305,41259,81276,41252,21270,31251,51265,41251,21264,9	1280,2 1287,8 1311,8 1264,1 1283,3 1256,7 1276,4 1256,8 1272,8 1255,4 1271,8	6,6 5,9 6,4 4,3 6,9 4,5 6,1 5,3 7,4 4,2 6,9		
1-Тридецен <i>транс</i> -2-Тридецен <i>цис</i> -2-Тридецен <i>транс</i> -3-Тридецен <i>цис</i> -3-Тридецен <i>транс</i> -4-Тридецен <i>цис</i> -5-Тридецен <i>цис</i> -5-Тридецен <i>транс</i> -6-Тридецен <i>цис</i> -6-Тридецен		$\begin{array}{c} 1369,3\\ 1375,9\\ 1398,8\\ 1354,9\\ 1369,4\\ 1346,5\\ 1361,6\\ 1344,1\\ 1355,4 \end{array}$	1375,4 1382,2 1404,8 1359,3 1376,5 1351,8 1368,6 1951,0 1364,9 1364,9 1364,9 1362,7	$\begin{array}{c} 6,1\\ 6,3\\ 6,0\\ 4,4\\ 7,1\\ 5,3\\ 7,0\\ 6,9\\ 9,5\end{array}$		

Инлексы улерживания и температурные инкременты

ловый эфир — ПФЭ, полиэтиленгликоль 4000 — ПЭГ [3]). Индексы удерживания н-алкенов линейно зависят также от обратной величины температуры (I/T). Константы A и B уравнения (2) I = A + B/T приведены в табл. 4.

Различия между экспериментальными и рассчитанными по формулам (1) и (2) значениями І не превышают 0,1% (отн.), средняя погрешность 0,2-0,3 ед.

Температурные инкременты индексов удерживания $10(\delta I/\delta T)$ на ТЦЭП (табл. 1) значительно больше (3,3—9,5 ед.), чем на сквалане (СК), ПФЭ и ПЭГ (от -0,4 до 1,2 ед. [^{3, 6}]).

На ТЦЭП температурные инкременты обнаруживают большую зависимость от положения двойной связи, чем на менее полярных жидких

T 4 T 4 T 4 T

ц 1

1 1

Таблица 2

Коэффициенты a и b уравнения I = a + bn *н*-алкенов $C_{10} - C_{13}$

and the second s	D" agen	Температура, °С					
Углеводород		Courses 1	70	80			
		а	b	a	Ь		
1-Алкены транс-2-Алкены транс-3-Алкены цис-3-Алкены транс-4-Алкены цис-4-Алкены транс-5-Алкены цис-5-Алкены		141,06 153,86 183,91 120,55 161,66 120,05 166,25 138,31 186,01	94,39 94,00 93,45 94,95 92,90 94,34 91,95 92,75 89,95	$141,60 \\ 157,53 \\ 198,33 \\ 122,33 \\ 164,90 \\ 116,13 \\ 165,56 \\ 128,93 \\ 172,66 \\$	94,90 94,19 92,80 95,14 93,20 95,05 92,54 94,00 91,70		

Таблица 3

Ko

Значения ІСН2 и-алкенов С10-С13 при 80 °С

Таблица 4

B

0,6750

0,6150

0,6799

0,4599

0,6950 0,4649

0,6950

0,4200

0,6499

эффициенты	A	И	B	уравнения
I = A + B/2	l' H	ун	де	ценов

A

1131,9

1144,7

1164,5

1132,5

1134,6

1124,8

1127,8

1129,1

1129,6

10000	1	Положе					
n1	1	2	3	4	5	6	Углеводород
- Age	Reality	1-иц	ис-изом	еры	poin a	64560.88	1-Ундецен транс-2-Унлецен
$10 \rightarrow 11$ $11 \rightarrow 12$ $12 \rightarrow 13$	95,0 94,6 95,2	92,9 92,6 93.0	93,2 93,2 93,2	92,5 92,9 92,9	91,8 91,3 92 1	90.9	цис-2-Ундецен транс-3-Ундецен цис-3-Унлецен
12-15	50,2	транс	-Изоме	ры	52,1	50,5	<i>транс</i> -4-Ундецен <i>цис</i> -4-Ундецен
$10 \rightarrow 11$ $11 \rightarrow 12$ $12 \rightarrow 13$		94,4 94,0 94,4	95,3 95,1 95,2	95,1 95,0 95,1	94,1 93,8 94,2	93,8	цис-5-Ундецен

фазах (рис. 1). Наиболее низкими значениями $10(\delta I/\delta T)$ обладают *транс-6-* и *транс-3-алкены, цис-алкены* имеют на 1—5 ед. высшие $10(\delta I/\delta T)$, чем соответствующие *транс*-алкены.

Разделение изомеров н-алкенов. Порядок элюирования и разделение изомерных н-алкенов на ТЦЭП видны на рис. 2, где представлены хроматограммы н-алкенов С10-С13. Последовательность выхода следующая: транс-6-, транс-5-, транс-4-, транс-3-алкены, за ними следуют цис-6-, цис-5-, цис-4-, цис-3алкены. 1-Изомеры элюируются совместно с цис-изомерами, место их выхода зависит от n: 1-алкены C₁₁—C₁₂ выходят перед цис-3алкеном, а 1-тридецен совместно с цис-3-тридеценом.

Рис. 1. Зависимость температурного инкремента $10(\delta I/\delta T)$ н-додеценов от положения двойной связи в молекуле: О — 1,2,3-трис (2-цианэтокси) пропан, 🛆 сквалан, 🗆 — полиэтиленгликоль 4000.

11	Положение двойной связи						
n	2	3	4	5	6		
10 11 12 13	26,9 25,4 24,0 22,6	23,2 21,1 19,2 17,2	24,2 21,8 19,7 16,8	20,8 18,5 16,0 13,9	16,4 13,5		

100	-					0
1	an	1	11	11	π	6
	uo.	~ ~	**	4	u,	2

Разности между индексами удерживания характерных пар изомеров *н*-алкенов при 80 °С

	Пo.	Положение двойной связи						
1	2/3	31/4	4/5	5/6				
цис-Алкены								
10 11 12 13	29,4 29,1 28,5 28,3	5,9 6,6 6,9 7,9	1,3 2,0 3,6 3,7	1,0 2,2				
	тра	чс-Алке	ены					
10 11 12 13	25,7 24,8 23,7 22.0	7,1 - 7,3 - 7,4 - 7,5	-2,3 -1,3 -0,1	1,4				

Таблица 7

Структурные инкременты Н и ∆I для н-алкенов С₁₀--С₁₃ при 80 °С

VETERO	VETEROTOPOT	1-иц	ис-алкены	<i>транс</i> -алкены	
	отлеводород			Н	
1-Децен 1-Ундецен 1-Додецен 1-Тридецен	mapping and the	90,6 85,6 80,2 75,4	108,5 108,7 97,9 92,8		
2-Децен		126,3	125,4	99,4	102,7
2-Ундецен		119,2	1'18,4	93,8	97,3
2-Додецен		111,8	111,0	87,8	90,9
2-Тридецен		104,8	104,4	82,2	85,3
3-Децен		96,9	111,8	73,7	88,2
3-Ундецен		90,1	105,8	69,0	83,6
3-Додецен		83,3	99,5	64,1	79,1
3-Тридецен		76,5	93,2	59,3	74,5
4-Децен		91,0	109,1	66,6	83,7
4-Ундецен		83,5	104,2	61,7	81,2
4-Додецен		76,4	98,2	56,7	76,9
4-Тридецен		68,6	91,4	51,8	72,5
5-Децен		89,7	108,9	68,9	85,1
5-Ундецен		81,5	104,6	63,0	82,0
5-Додецен		72,8	98,7	56,8	77,3
5-Тридецен		64,9	92,7	51,0	72,4
6-Додецен		71,8	98,4	55,4	76,9
6-Тридецен		62,7	93,1	49,2	72,9

Разности между значениями *I* соответствующих *цис-* и *транс-алке-*нов (*dI*_{4.7})* уменьшаются по мере перемещения двойной связи к центру молекулы и с удлинением углеродной цепи (табл. 5). Но значения *dI*_{4.7} на ТЦЭП у *н*-алкенов C₁₁—C₁₃ гораздо больше (13,5—25,4 ед. при 80°), чем соответствующие величины на СК, ПФЭ и ПЭГ (0,1—15,5 ед.

* ц, т — цис- и транс-алкены. (Эти же обозначения приняты на рисунках.)

Рис. 3. Разделение *цис*- и *транс*-алкенов С₁₁—С₁₃ в зависимости от положения двойной связи и числа атомов углерода в молекуле.

при 100° [^{3, 6}]), т. е. высокополярная жидкая фаза хорошо разделяет пары *цис*- и *транс*-алкенов (рис. 3).

Различия в значениях *I* между соседними изомерами с одинаковой геометрией даны в табл. 6. Полностью разделяются 2-, 3- и 4-алкены. Наименьшие значения d*I* наблюдаются для *транс*-4- и *транс*-5-алкенов, плохо разделяются также 5- и 6-алкены.

Структурные инкременты H и ΔI . Значения H ($H = I_{\mu-aлкen} I - \mu-aлкan$) μ -алкенов $C_{10} - C_{13}$ варьируются в пределах 49,2—126,3 ед. (табл. 7),

на ТЦЭП они выше, чем на ПФЭ и ПЭГ, примерно на 30—40 ед. [³]. Наивысшими величинами Н обладают 2-алкены, по мере перемещения двойной связи от второго углеродного атома к середине цепи структурные инкременты уменьшаются (рис. 4).

С увеличением n от C₁₀ до C₁₃ инкременты $H_{80^{\circ}}^{\text{TU} \supset \Pi}$ уменьшаются на 14—25 ед., на ПФЭ на 1,0—9,0 и на ПЭГ — 0,4—8,7 ед. при 100° [³]. Диапазон значений H для цис-алкенов C₁₀—C₁₃ (63,6 ед.) больше, чем для транс-алкенов (50,2 ед.).

> $\Delta I_{100^{\circ}}^{\Pi \Phi \ni -CK} = 35,2 - 42,2 [3],$ $\Delta I_{100^{\circ}}^{\Pi \ni \Gamma + CK} = 55,8 - 79,0 [3],$ $\Delta I_{30^{\circ}}^{\Pi \oplus \Pi - CK} = 72,4 - 125,4.$

Как правило, *цис*-изомеры имеют бо́льшие на 19—23 ед. значения ΔI по сравнению с соответствующими *транс*-изомерами (рис. 4), в группе *цис*-изомеров с равным числом *п* наивысшими инкрементами ΔI обладают 2-изомеры. *н*-Алкены с более центральной двойной связью, чем положение 2 (т. е. 3-, 4-, 5- и 6-алкены), обладают близкими значениями ΔI как в группе *цис*-, так и *транс*-изомеров. С удлинением углеродной цепи от C₁₀ до C₁₃ инкременты ΔI уменьшаются: на 16—21 ед. для *цис*-и 1-алкенов и на 11—17 ед. для *транс*-алкенов.

Выводы

Из результатов данной работы вытекает, что ряд закономерностей изменения индексов удерживания и их инкрементов, установленных для *н*-алкенов на сквалане, ПФЭ и ПЭГ ^[3, 6], действителен и на высокополярном ТЦЭП.

На ТЦЭП величины индексов удерживания и значения температурных и структурных индексов удерживания значительно больше, чем на менее полярных жидких фазах.

Колонка с ТЦЭП полностью разделяет все пары цис- и транс-алкенов С10-С13.

ЛИТЕРАТУРА

- Орав А., Эйзен О. Индексы удерживания для алкенов, алкинов и цикленов на капиллярных колонках. Изв. АН ЭССР. Хим. Геол., 1972, т. 21, № 1, c. 39-47. 2. Eisen, O., Orav, A., Rang, S. Identification of normal alkenes, cyclopen-
- tenes and cyclohexenes by capillary gas chromatography. Chromatographia, 1972, v. 5, N 11, p. 229-239.

- 1972, v. 5, N 11, p. 229—239.
 R an g, S., Kuningas, K., Orav, A., Eisen, O. Capillary gas chromato-graphy of C₆—C₁₄ n-alkenes on polyphenylether and polyethylene glycol 4000. Chromatographia, 1977, v. 10, N 2, p. 55—64.
 Бигдергауз М. С., Семенченко Л. В., Езрец В. А., Богословский Ю. Н. Качественный газохроматографический анализ. М., 1978, с. 34.
 Коváts, E. Gas-chromatographische Charakterisierung organischer Verbindun-gen. Tl. 1: Retentionindices aliphatischer Halogenide, Alkohole, Aldehyde und Ketone. Helv. Chim. Acta, 1958, v. 41, N 7, p. 1915—1932.
- Soják, L., Hrivnák, J., Majer, P., Janák, J. Capillary gas chromato-graphy of linear alkenes on squalane. Analyt. Chem., 1973, v. 45, N 2, p. 293-302.

Институт химии Академии наук Эстонской ССР Поступила в редакцию 4/IV 1979

Anne ORAV, Kai KUNINGAS, Silvia RANG, O. EISEN

n-ALKEENIDE C10-C13 KAPILLAARGAASIKROMATOGRAAFIA 1,2,3-tris(2-TSÜANOETOKSÜ)PROPAANI ABIL

On esitatud n-alkeenide C10-C13 retentsiooniindeksid, temperatuuri- ja struktuuriinkremendid ning uuritud nende olenevust molekuli struktuurist 1,2,3-*tris* (2-tsüanoetoksü)-propaani kapillaarkolonni abil. Tulemusi on võrreldud vähempolaarsete vedelate faaside kasutamise korral saadud tulemustega.

Anne ORAV, Kai KUNINGAS, Silvia RANG, O. EISEN

CAPILLARY GAS CHROMATOGRAPHY OF n-ALKENES C10-C13 ON 1,2,3-tris(2-CYANOETHOXY) PROPANE

Retention indices I of C_{10} — C_{11} *n*-alkenes, temperature and structural increments of I on 1,2,3-*tris* (2-cyanoethoxy) propane are presented and correlated with the structure of isomers. The results are compared with the data obtained previously on the less polar liquid phases,