EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. 29. KÕIDE KEEMIA. 1980, NR. 1

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 29 ХИМИЯ. 1980, № 1

https://doi.org/10.3176/chem.1980.1.03

УДК 665.6.032: 543.5

И. ЛАСН, Л. КАЛДЕ, И. КЛЕСМЕНТ

О ТЕРМОКАТАЛИТИЧЕСКОМ ПРЕВРАЩЕНИИ ВЫСШИХ СЛАНЦЕВЫХ 5-АЛКИЛРЕЗОРЦИНОВ НА АКТИВНЫХ УГЛЯХ В ИХ НИЗШИЕ ИЗОМЕРЫ

Проблемы деалкилирования фенолов более подробно изучены пока только на примере их одноатомных представителей, прежде всего алкилпроизводных оксибензола. Деалкилирование исследовалось как в жидкой [¹⁻³], так и в паровой фазах [⁴⁻⁷]: либо чисто термическим, некаталитическим разложением [^{4, 5}], либо термокаталитически [^{6, 7}].

По деалкилированию двухатомных фенолов имеются весьма скудные данные [^{1, 3}]. Термическая стабильность алкилрезорцинов в статических условиях применительно к условиям коксования сланцевой смолы в диапазоне температур 350—420 °С изучена в [⁹]. Выходы низших алкилпроизводных в этих условиях были низки — суммарно всего 3 % от исходного сырья. Образование водорастворимых алкилрезорцинов в малых количествах наблюдалось также при жидкофазном нагревании (150—300°) их высших изомеров в присутствии катализаторов, применяемых при деалкилировании одноатомных фенолов (серная, *n*-толуолсульфо- и фосфорная кислоты и хлористый цинк) [¹⁰].

При коксовании сланцевой смолы в коксовом дистилляте также появляются низшие водорастворимые алкилрезорцины, в том числе резорцин, 5-метилрезорцин и 5-этилрезорцин, которые в исходной смоле не содержались. Источниками таких алкилрезорцинов являются как высокомолекулярные структурные элементы керогена, присутствующие в коксуемой смоле, так и сами алкилрезорцины с длинной боковой цепью [¹¹]. Однако пока нет ясного представления о том, расщепление которого из них является доминирующим. Учитывая низкие выходы водорастворимых алкилрезорцинов при термическом разложении длинноцепочечных алкилрезорцинов [⁹], а также результаты жидкофазного каталитического деалкилирования [¹⁰], мы склонны предположить, что большую роль в образовании легких резорцинов в условиях коксования играют структурные звенья керогена — тяжелые нейтральные кислородные составляющие сланцевой смолы.

Лучшие результаты были получены при чисто термическом пиролизе (700—900°); степень превращения 5-н-гептилрезорцина в резорцин и 5-метилрезорцин составляет 30—32%, а о- и *п*-изомеров достигает почти 80% [¹²].

Из результатов деалкилирования одноатомных алкилфенолов и термического разложения алкилрезорцинов явствует, что скорость и выходы деалкилирования зависят от: 1) положения алкильной группы (причем *n*-изомеры разлагаются легче других, а прочность алкильных групп в *м*-положении наивысшая); 2) структуры алкильной группы — разветвленная цепь расщепляется легче и 3) количества алкильных групп у ароматического ядра. Также известно, что длинные алкильные цепи расщепляются легче коротких. Самым слабым звеном является связь между α и β углеродными атомами.

Реакции деалкилирования алкилароматических углеводородов и одноатомных алкилфенолов протекают по радикальному механизму. Такой же механизм предлагается для алкилрезорцинов при их термическом деалкилировании [¹²].

Цель нашей работы заключалась в исследовании возможности деалкилирования алкилрезорцинов в паровой фазе при пониженной температуре в условиях гетерогенного катализа.

Деалкилирование проводилось в среде водорода, азота или смеси азота с водяным паром. Поскольку процесс каталитического деалкилирования алкилрезорцинов в паровой фазе пока не изучен, то были применены катализаторы, которые себя хорошо зарекомендовали при превращении одноатомных фенолов:

1) Алюмосиликаты (NaX) [^{7, 8}] и катализатор для крекинга нефти (удельная поверхность 300—320 м²/е, раднус пор 20—50 Å, содержание Al₂O₃ 8,0 и Na₂O 0,1%);

2) Активные угли [6] АГ-3, АГ-5, СКТ, БАУ, КАД-иодный. В некоторых опытах на уголь (АГ-5) наносились добавки (Ni—Cr, Zn, Na₂CO₃ и H₃BO₃) по методу [6];

3) Кокс [6]. (Испытывался промышленный образец сланцевого электродного кокса.)

Деалкилированию подвергался концентрат 5-алкилрезорцинов, выделенный из фракции 320—360° сланцевой смолы методом противоточной экстракции двумя растворителями — 10%-ным водным раствором гидроокиси натрия и бензолом [¹³]. Характеристика концентрата: средняя молекулярная масса 209, содержание (в %): ОН-групп 14,1; С 77,8; Н 9,2; S 0,2; О 12,8; N ниже 0,1. Содержание 5-алкилрезорцинов в исследованном концентрате 68,9%; по числу углеродных атомов в боковой цепи они распределялись следующим образом: низших членов гомологического ряда с содержанием одного и двух атомов углерода соответственно 0,5 и 2,8%; высших алкилрезорцинов (С₃—С₁₇) 65,6%.

Фенолы в исходном сырье и в катализатах анализировались в виде силиловых эфиров на газовом хроматографе «Выру-хром» с катарометром на колонках с внутренним диаметром 3 мм и длиной 3 м, заполненных 15% апьезона L на хроматоне N-AW DMCS. Содержание отдельных компонентов вычислялось методом внутренней нормализации.

Пары фенолов переносились из испарителя в реактор газом-носителем. Реактором служила труба, наполненная стационарным слоем катализатора в объеме 20 мл. Катализат улавливался в приемнике при 18—22°. Режим катализа был одинаков во всех опытах: остаточное давление 15 мм рт. ст., температура 500° и время контакта 0,4—0,5 с. Следовательно, потери — неконденсированный туман — по количеству были примерно одинаковыми во всех опытах. Одна загрузка катализатора использовалась многократно до заметного снижения его активности, которое наблюдалось в зависимости от марки катализатора через 3—6 опытов.

Самые лучшие результаты при деалкилировании 5-алкилрезорцинов были получены на углях марок КАД-иодный и АГ-5 (табл. 1). Степень превращения их в водорастворимые изомеры в некоторых опытах достигала 46,5—48,0%. Однако активность первого из них падает быстрее, чем активность второго: например, каталитическая активность АГ-5 в шестом опыте выше (26,1%), чем у марки КАД-иодного в четвертом опыте (22,4%). Следует отметить еще то обстоятельство, что на всех марках угля, за исключением АГ-5, степень превращения 5-алкилрезорцинов в первых опытах как правило значительно выше степени превращения в последующих опытах. Следовательно, каталитическая активность углей падает в процессе деалкилирования 5-алкилрезорцинов весь-

Таблица 1

Марка угля	Нагрузка сырья на катализатор в одном опыте, г/г	Выход катализата на сырье, вес. %	Степень превращения высших 5-алкилрезорцинов в их водо- растворимые изомеры, мол. %				
			Резор- цин	5-метил- резорцин	5-этил- резорцин	Сумма	
БАУ	0,48 0,50 0,50	54,3 82,3 92,5	2,1 0,9 0,8	- 9,9 5,9 4,4	5,0 2,4 2,5	17,0 9,2 7,7	
СҚТ	0,57 0,60 0,60 0,57	27,0 81,0 99,6 100,0	7,8 2,9 0,6	16,6 17,9 4,5 1,6	9,1 10,5 3,3 1,3	33,5 31,3 8,4 2,9	
КАД-иодный	0,55 0,59 0,59 0,52	49,0 79,4 88,0 91,7	5,2 2,7 1,6 1,0	26,0 21,1 14,5 12,0	15,3 16,2 12,2 9,4	46,5 40,0 28,3 22,4	
ΑΓ-3	0,47 0,50 0,37 0,46	32,4 57,8 73,0 91,5	4,4 1,3 1,0 0,8	19,5 11,2 11,2 7,8	7,2 6,8 7,0 8,0	31,1 19,3 19,2 16,6	
ΑΓ-5	0,53 0,62 0,55 0,56 0,55 0,55 0,55	38,2 68,5 81,5 85,5 88,2 92,2	7,3 3,0 1,7 1,3 1,5 1,0	26,125,119,516,714,514,3	11,3 19,9 15,3 15,1 12,2 10,8	44,7 48,0 36,5 33,1 28,2 26,1	

Результаты последовательного деалкилирования высших 5-алкилрезорцинов на активных углях

Таблица 2

Выход низших 5-алкилрезорцинов на углях, пропитанных добавками

Побавка/катализатор	Нагрузка сырья на катали- затор в одном опыте, <i>г/г</i>	Выход ката- лизата на сырье, вес. %	Степень превращения высших 5-алкилрезорцинов в их водо- растворимые изомеры, мол. %				
			Резор- цин	5-метил- резорцин	5-этил- резорцин	Сумма	
Ni—Cr/AΓ-5	0,73	Полно	е коксова	ние катали	затора	and a residue	
Zn/AΓ-5	0,59 0,56 0,55	40,5 90,8 96,2	0,3	3,9 2,6 4,0	2,1 2,6	4,2 4,7 6,6	
Na₂CO₃/AΓ-5	$1,04 \\ 0,66 \\ 0,56 \\ 0,56 \\ 0,55 \\ 0,56$	$21,0 \\ 51,4 \\ 63,3 \\ 65,2 \\ 64,5 \\ 63,9$	0,5 1,2 1,1 0,9 0,8 0,7	7,3 18,6 21,1 16,3 17,6 12,9	0,9 9,0 12,0 9,4 9,3 7,0	8,7 28,8 34,2 26,6 27,7 20,6	
H ₃ BO ₃ /AΓ-5	0,47 0,22 0,57 0,55 0,56 0,58	37,9 60,5 68,2 78,2 79,1 80,6	4,2 1,7 0,3 —	22,2 21,6 6,3 2,3 1,8 1,7	9,3 14,4 2,6 1,1 0,2 0,7	35,7 37,7 9,2 3,4 2,0 2,4	

О термокаталитическом превращении...

Таблица 3

Превращение высших 5-алкилрезорцинов на коксе и алюмосиликатах

Қатализатор	Нагрузка сырья на катали- затор в одном опыте, <i>г/г</i>	Выход катали- зата на сырье, вес. %	Степень превращения высших 5-алкилрезорцинов в их водо- растворимые изомеры, мол. %				
			Резор- цин	5-метил- резорцин	5-этил- резорцин	Сумма	
Сланцевый электродный кокс	0,29 0,34 0,31 0,23	97,4 98,1 96,6 96,7		0,6 0,9 1,0 0,5	0,6 1,6 1,5 0,5	1,2 2,5 2,5 1,0	
Цеолит NaX	0,53 0,61 0,55 0,56	53,5 85,2 97,8 99,0	1111	2,4 1,5 1,2 1,1	• 1,3 1,9 2,1	2,4 2,8 3,1 3,2	
Катализатор для крекинга нефти	a 0,52 0,63 0,54	49,8 75,9 83,7	12,0 3,1 0,9	11,8 4,4 2,3	1,6 2,0 2,5	25,4 9,5 5,7	

Таблица 4

Результаты деалкилирования высших 5-алкилрезорцинов на активном угле АГ-5 в различных средах

Газ-носитель	Нагрузка сырья на катали- затор в одном опыте, <i>г/г</i>	Выход катали- зата на сырье, вес. %	Степень превращения высших 5-алкилрезорцинов в их водо- растворимые изомеры, мол. %				
			Резор- цин	5-метил- резорцин	5-этил- резорцин	Сумма	
Водород	0,53 0,62 0,55 0,56 0,55 0,55	38,2 68,5 81,5 85,5 88,2 92,2	7,3 3,0 1,7 1,3 1,5 1,0	26,1 25,1 19,5 16,7 14,5 14,3	11,3 19,9 15,3 15,1 12,2 10,8	44,7 48,0 36,5 33,1 28,2 26,1	
Азот	0,50 0,54 0,57 0,53 0,52 0,58	36,1 66,1 73,4 87,1 82,9 78,8	5,7 2,4 1,9 1,0 0,9 0,8	$25,7 \\ 22,1 \\ 19,4 \\ 13,8 \\ 10,5 \\ 9,6$	11,2 16,9 16,8 . 11,0 10,4 7,7	42,6 41,4 38,1 25,8 21,8 18,1	
Азот и водяной пар	$0,50 \\ 0,54 \\ 0,57 \\ 0,53 \\ 0,53 \\ 0,53 \\ 0,58$	37,9 62,4 69,7 77,6 86,3 74,4	6,0 2,5 1,8 1,1 1,0 0,7	24,6 22,6 18,2 16,4 13,6 9,3	11,720,714,112,710,97,3	42,3 45,8 34,1 30,2 25,5 17,3	

ма быстро. Даже в случае катализатора АГ-5, когда наблюдалось повышение степени превращения во втором опыте, после шестого цикла этог показатель снижается примерно в 2 раза.

Причины быстрого падения активности неизвестны. Объяснить это явление, как показали наши некоторые опыты с сильно закоксованными углями, только покрытием катализаторов коксом тоже нельзя.

15

Покрытие углей добавками Ni-Cr, Zn, Na₂CO₃ или H₃BO₃ к повышению их каталитических свойств не привело (табл. 2). Уголь АГ-5, обработанный Ni-Cr, покрылся полностью коксом уже при первом опыте. На угле АГ-5, пропитанном карбонатом натрия, алкилрезорциновое сырье подверглось в начальные моменты проведения процесса глубокому разложению с образованием большого количества газовых продуктов. За этим последовал период весьма высоких выходов целевых продуктов (до 34,0%), а потом катализатор покрылся коксом вплоть до полной потери проницаемости.

Сланцевый кокс почти не обладает каталитической способностью при деалкилировании 5-алкилрезорцинов (табл. 3). Следовательно, углерод, не имеющий развитой поверхности, не является активным также при деалкилировании.

Деалкилирование на алюмосиликатах протекает с образованием водорастворимых 5-алкилрезорцинов в весьма малых количествах (табл. 3). В случае NaX выход составил около 3%, и он оставался на таком же уровне в течение 4-5 циклов. В то же время катализатор для крекинга нефти хотя и позволил получить в первых опытах значительно больший выход, однако очень скоро потерял свою активность.

Деалкилированию алкилрезорцинов с длинной боковой цепью на активных углях способствует, по нашему мнению, возбуждение их неполярной части — углеводородной цепи, а на полярных алюмосиликатах реакция идет в полярной части молекулы. В результате этого в последнем случае превалируют реакции дегидроксилирования и расщепления ядра.

Проведение процесса в различных средах (водород, азот или азот в смеси с водным паром) показывает, что водород дает несколько лучшие выходы, но принципиального различия в их действии не наблюдается (табл. 4). Это обусловливается, по всей вероятности, малой концентрацией водорода или водяного пара в условиях пониженного давления.

Отметим, что среди низших 5-алкилрезорцинов 5-метилрезорцин образуется в самых больших количествах, т. е. разрыв алкильной цепи происходит на углях (как на чистых, так и на обработанных добавками) преимущественно по β-связи (табл. 1, 2). Интересно, что водорастворимые 5-алкилрезорцины, полученные на разных алюмосиликатах, по составу различаются — NaX вообще не дает резорцина, а катализатор для крекинга нефти способствует образованию более низших производных (табл. 3).

По мере уменьшения активности всех катализаторов селективность разрыва связи в α- и β-положениях уменьшается.

Предполагается, что положительное действие угольного катализатора обусловлено тем, что на угле, как на неполярном веществе, адсорбируется неполярная часть алкилрезорцина — его боковая цепь, что и способствует ее деалкилированию. На полярных катализаторах происходит разрушение циклического ядра фенола.

ЛИТЕРАТУРА

- Харлампович Г. Д., Чуркин Ю. В. Фенолы. М., 1974, с. 293—296.
 Воль-Эпштейн А. Б. Каталитические превращения алкилфенолов. М., 1973.

и бутилфенолов в присутствии водяного пара. — Изв. АН ЭССР. Хим. Геол., 1971, т. 20, № 1, с. 3-7.

- Milnes, M. H., Deen, R. E. The catalytic dealkylation of alkylphenols at atmospheric pressure. J. Appl. Chem. Biotechnol., 1971, v. 21, Oct., p. 287-296.
- 7. Карик Х. А. Влияние различных катализаторов на крекинг фенолов сланцевой смолы. — Тр. Таллинск. политех. ин-та, 1960, № 185, с. 117—131. 8. Раудсепп Х. Т., Карик Х. А. Влияние химического состава алюмосиликат-
- ва удсечи п. х. г., карик х. А. Влияние сланцевой соотава алюмосиликат-ного катализатора при крекинге фенолов сланцевой смогы. Тр. Таллинск. политех. ин-та, 1960, № 185, с. 100—116.
 Лилле Ю. Э., Метсик Л. Ю., Пурре Т. А. О термолизе алкилрезорцинов в статических условиях. Тр. Таллинск. политех. ин-та, 1973, № 332, с. 171—184.
 Ласн И. М. Жидкофазное деалкилирование высших 5-алкилрезорцинов, выде-тации на фологии. Болиции. Болючие статических на б. с. 6.
- ленных из фракции сланцевой смолы. Горючие сланцы, 1976, № 9, с. 6—8. 11. Пурре Т. А. Исследование дистиллятов коксования высших фракций смолы по-
- лукоксования сланца-кукерсита как источника алкилрезорцинов. Автореф. канд. дис. Таллин, 1974.
- Лилле Ю. Э., Кундель Х. А., Пурре Т. А., Биттер Л. А. О пиролизе алкилрезорцинов. Химия тв. топлива, 1972, № 3, с. 128—134.
 Вийрес А. Х., Клесмент И. Р. Результаты опытов выделения алкилрезор-
- . цинов с длинной боковой цепью. Горючие сланцы, 1976, № 5, с. 13-17.

Институт химии Академии наук Эстонской ССР

Поступила в редакцию 7/III 1979

Научно-исследовательский институт сланцев

I. LASN, L. KALDE, I. KLESMENT

PÕLEVKIVIÕLI KÕRGEMATE 5-ALKÜÜLRESORTSIINIDE TERMOKATALÜÜTILINE KONVERSIOON AKTHVSÖEL MADALAMATEKS ISOMEERIDEKS

Artiklis on käsitletud alküülresortsiinide dealküülimise võimalusi aurufaasis madalal temperatuuril heterogeense katalüsaatori korral. Katsetes kasutati kahealuseliste fenoo-lide segu, mis sisaldas 69% 5-alküülresortsiine. Dealküülimine toimus vaakuumis inert-gaasi ja vesiniku voolus temperatuuril 500 °C. Katalüüsi tulemusena saadi kuni 48% alküülresortsiinide vees lahustuvaid homolooge. Polaarsete katalüsaatorite ja aktivaa-torite kasutamise korral olid saagised väiksemad.

I. LASN, L. KALDE, I. KLESMENT

THERMOCATALYTIC CONVERSION OF SHALE OIL HIGHER 5-ALKYL **RESORCINOLS ON ACTIVE COALS TO LOWER ISOMERS**

Dealkylation of a mixture of two-basic phenols that contained 69% 5-alkyl resorcinols proceeded in vacuum in inert gas or hydrogen stream at 500 °C. As a result of catalysis from alkyl resorcinols, up to 48% water-soluble homologues were formed. On polar catalysts and applying activators, lower yields were obtained.

17