EËSTI NSV TEADUSTË AKADEEMIA TOIMETISED. 28. KÖIDE KEEMIA. 1979, NR. 1

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 28 ХИМИЯ. 1979, № 1

УДК 665.7.032.57: 66.094.3

Р. ВЕСКИ, Н. ФИЛИМОНОВА, Евгения БОНДАРЬ, Т. ЛУМИСТЕ, А. ФОМИНА

ИССЛЕДОВАНИЕ ОРГАНИЧЕСКОГО ВЕЩЕСТВА ДИКТИОНЕМОВОГО СЛАНЦА ОКИСЛЕНИЕМ АЗОТНОЙ КИСЛОТОЙ

(Представлена О. Эйзеном)

Диктионемовые сланцы представляют собой темно-коричневые сланцеватые аргиллиты с содержанием в среднем 15% органического вещества (OB), из которого при полукоксовании в алюминиевой реторте образуется около 20% смолы [¹]. Смола полукоксования диктионемового сланца характеризуется низким содержанием алканов и алкенов, их суммарное содержание, по данным [^{2–4}], составляет около 1% на OB. Сравнение длины *н*-алкановых цепей (C₅—C₂₀) дебитуминизированного сланца и его битумоида (C₁₀—C₃₆) показывает, что источники их происхождения различны [⁵]. Высказывалась возможность образования длинноцепочечных *н*-углеводородов за счет продуктов метаболизма сульфатвосстанавливающих бактерий [⁶].

Содержание ароматических соединений, идентифицированных в смоле полукоксования диктионемового сланца, значительно выше содержания *н*-алканов и алкенов [^{2–4}], но они не несут равнозначной с последними информации об исходной структуре ОВ вследствие возможного их образования в результате вторичных реакций.

Выявлено также, что для диктионемового сланца характерно непостоянство выхода гуминовых кислот [7] и битумоида, а также выхода и состава смолы полукоксования [6].

При гидролизе диктионемового сланца были идентифицированы в незначительных количествах аминокислоты и углеводы [⁸]. Что касается образующихся при окислении диктионемового сланца органических кислот, то количественных данных об этом в литературе нет. Известно только, что при окислении перманганатом калия в щелочной среде образуются в основном алифатические дикарбоновые кислоты: щавелевая и высшие гомологи янтарной кислоты. Из алифатических монокарбоновых кислот были идентифицированы первые члены гомологического ряда, из бензолкарбоновых — бензойная (в следах) [⁹].

Об образовании бензолкарбоновых кислот при окислении диктионемового сланца азотной кислотой было сообщено нами ранее [¹⁰]. Ниже приводятся данные о выходе и составе бензолкарбоновых и алифатических кислот в зависимости от глубины окисления.

Обработка азотной кислотой при комнатной температуре

Исследование проводилось на средней пробе диктионемового сланца, отобранной из северной части карьера Маарду Эстонской ССР в марте 1975 г. сектором обогатительных процессов Института химии АН ЭССР (Р. Кох, В. Ахелик). Характеристика пробы приводится в табл. 1. Выход битумонда A (в виде эфирного и ацетонового экстрактов) составил 2,2% от OB. После обработки 10%-ной соляной кислотой было извлечено дополнительно 1,0% битумонда. Выход гуминовых кислот, по методике [¹²], составил 3,0% от OB.

С целью удаления части растворимых в азотной кислоте минеральных веществ и облегчения разделения продуктов последующего окисления, исходный сланец, измельченный до 0,1 *мм*, обрабатывался в течение 24 *ч* 20%-ной азотной кислотой при комнатной температуре и соотношении 3,5 *л* кислоты на 1 кг сланца. После вышеуказанной обработки

Таблица 1

Aupakiephein	ka np	ооы дик	nonea	IUBUIU C	лапца	meerop	эмден	in maa	рду, 70		
Наименование	A°	СО ^с ₂ минер.	OB	Soбщ.	Сг	Hr	Nr	Sr	Or	H/C	-
Исходный сланец Сланец, обработан-	81,0	0,2	15,3	3,2	74,7	7,6	1,9	2,5	13,3	1,2	
ный 20%-ной азот- ной кислотой	79,2	-	18,9	0,5	67,2	7,2		25,6		1,3	

* ОВ сланцев и элементный состав рассчитаны на основе [¹¹], элементный состав обработанного сланца по ГОСТ 2408-49, S_{общ}. по ГОСТ 8606-72. Формы серы на сланец: S_{пир}. 1,7, S_{сульф}. 1,1 и S_{орг}. 0,4%.

3 ENSV TA Toimetised. K 1 1979

суммарное содержание гетероатомов (N, S и O) в элементном составе ОВ увеличилось по сравнению с исходным от 17,7 до 25,6% (табл. 1), что объясняется легкостью окисления и нитрования ОВ сланца. Обработанный сланец и остаток упаривания фильтрата и промывных вод экстрагировались ацетоном в аппарате Сокслета. Выход экстрактов, соответственно. 10.9 (золы нет) и 7,7% (Ac 9,8%, за счет нитратов) от ОВ сланца. Экстракты дистиллировались, метилировались диазометаном и хроматографировались в усло-

Рис. 1. Выход моно- (А) и дикарбоновых (Б) кислот от органического вещества диктионемового сланца при обработке его 20%-ной азотной кислотой при комнатной температуре (1); при окислении 58%-ной азотной кислотой только с подъемом температуры до 105 °C (2) и окислении при 105 °C в течение 3 ч (3).

33

		Выход кисло	г при обработко диктионемового	е и окислени сланца (<i>ме</i>	ии от органи /г) и состав	ического вещества (%)	-		Таблица 2
	Проду	икты обработ	ки 20%-ной			Продукть	и окисления		
Карбоновые		HNÓ3, 24	n	Только по	дъем темпер	атуры до 105 °C	Выд	ержка при 1	05 °C 3 u
кислоты	Раство- римые	Нераство- римые	Суммарно	Раство-	Нераство- римые	Суммарно	Раство- римые	Нераство- римые	Суммарно
Алифатические:									
Монокарбоновые	1,0	8,8	9,8 (71%)	5,0	6,3	11,3 (29%)	6,3	1,3	7,6 (14%)
Дикарбоновые	6,0	2,9	3,8 (28%)	16,4	4,9	21,3 (55%)	37,3	1,5	38,8 (70%)
Бензолкарбоновые	0,2	1	0,2 (1%)	5,7	0,7	6,4 (16%)	9,3	0,1	9,4 (16%)
Всего идентифицированных	2,1	11,7	13,8 (100%)	27,1	11,9	39,0 (100%)	52,9	2,9	55,8 (100%)
Неидентифицированы	4,6	6,0	10,4	2,9	3,0	5,9	11,4	6'0	12,3

34

35

виях [¹⁰]. Выход и групповой состав кислот обработки приводятся вместе с продуктами окисления в табл. 2, а распределение моно- и дикарбоновых кислот — на рис. 1.

Необходимо сразу отметить, что в условиях обработки и выделения экстрактов низкомолекулярные кислоты битумоида извлекаются и определяются вместе с кислотами, полученными при мягкой окислительной деструкции сланца.

Состав кислот был следующий: алифатических монокарбоновых — 71, дикарбоновых — 28 и бензолкарбоновых — только 1%. Монокарбоновые представлены в основном кислотами С₁₄, С₁₆, С₁₈, с максимумом содержания С₁₆. Все идентифицированные четные жирные кислоты характерны для сине-зеленых водорослей [¹³] — основного источника органического вещества горючих сланцев, а также и для бактериальных липидов [¹⁴].

В отличие от аналогичных объектов [^{15–17}], дикарбоновые кислоты из диктионемового сланца представлены практически одной азелаиновой (C₉) кислотой, что можно объяснить разрывом при окислении двойной связи Δ9—10 распространенных в природе ненасыщенных кислот, таких, как C_{14:1}, C_{18:1}, C_{18:2}, C_{18:3}, или их производных. Произошел ли этот разрыв во время обработки азотной кислотой или раньше, можно установить при анализе кислот битумоида.

Отсутствие в продуктах обработки диктионемового сланца (мягкое окисление) алифатических моно- и дикарбоновых кислот с длиной цепи более 18 атомов углерода вполне закономерно, поскольку высшая растительность — носитель длинноцепочечных структур — во время отложения данного сланца отсутствовала.

Окисление диктионемового сланца 58%-ной азотной кислотой

Условия окисления обработанного диктионемового сланца были в общих чертах аналогичны условиям окисления концентрата ОВ кукерсита [¹⁸]. К 200 мл 58%-ной азотной кислоты, подогретой до 60°, прибавляли при перемешивании 100 г сланца, обработанного 20%-ной азотной кислотой. Подъем температуры до 105° осуществлялся в течение 50 мин. Продолжительность выдержки при заданной температуре: нулевая, 1 и 3 ч.

Растворимые продукты окисления отделялись от нерастворимых фильтрацией. При разбавлении фильтрата промывными водами выделялся осадок с низкой зольностью (1,4—1,9%). Фильтрат и промывные воды упаривались. Все продукты окисления экстрагировались в аппарате Сокслета последовательно эфиром и ацетоном. Нерастворимые продукты обрабатывались дополнительно 1—2%-ным раствором щелочи при комнатной температуре.

Выход экстрактов (сумма эфирных и ацетоновых) из растворимых продуктов окисления с увеличением времени окисления увеличивался с 9,5 до 23,9%, из нерастворимых уменьшался с 49,6 до 3,8%. Выход экстрактов из продуктов, выделенных при разбавлении фильтрата, был более постоянным — около 10%. Суммарный выход всех перечисленных продуктов понижался от 80,1 до 59,0%.

В табл. З приводится элементный состав продуктов трехчасового окисления. Из данных табл. З следует, что экстракты растворимых продуктов окисления содержат больше кислорода и гетероатомов, по сравнению с остальными продуктами, выше для них и отношение H/C. Содержание азота в экстрактах колеблется в пределах 4,2—5,7%. ПовыЭлементный состав экстрактов продуктов трехчасового окисления

						COLUMN STREET,
Наименование	A°, %	С	Н	N	Оидр. гетеро- атомы	Н/С ато- марное
Растворимые продукты:						
эфирный экстракт ацетоновый экстракт	0,5 2,3	46,4 44,3	5,0 4,7	4,2 8,6	44,4 42,4	1,3 1,3
Нерастворимые продукты:					1-001 m	
эфирный экстракт ацетоновый экстракт	0,6	56,9 55,2	5,7 5,0	5,7 5,4	31,7 34,4	1,2 1,1
Продукты, выделенные при разбавлении фильтрата:						
эфирный экстракт ацетоновый экстракт	Ξ	53,8 53,6	5,0 4,6	5,4 5,4	35,8 36,4	1,1 1,0

шенное содержание его в ацетоновом экстракте растворимых продуктов обусловлено растворенными в ацетоне нитратами.

Данные табл. 2 свидетельствуют о том, что основное количество идентифицированных кислот концентрируется в растворимых продуктах окисления и прямо зависит от продолжительности последнего. Аналогичная зависимость наблюдается и для суммарного количества образовавшихся при окислении ди- и бензолкарбоновых кислот, в то время, как количество монокарбоновых кислот убывает с увеличением продолжительности окисления. Что касается компонентного состава монокарбоновых кислот окисления, то, в сравнении с кислотами обработки, он значительно изменяется в сторону увеличения содержания кислот с меньшим числом атомов углерода в молекуле (рис. 1, A). Укорочение углеродной цепи наблюдается и для дикарбоновых кислот (рис. 1, Б).

Полученный выход дикарбоновых кислот из диктионемового сланца (38,8 *мг/г*, или 3,9% от OB) значительно ниже, по сравнению с выходом в технологических (жестких) условиях их получения из керогена кукерсита (свыше 30% [¹⁹]). Это показывает, что доля алифатических и алициклических структур в OB диктионемового сланца значительно меньше, а доля лабильных к окислению структур, разлагающихся до CO₂ и воды, больше, чем в OB кукерсита.

Жесткие условия окисления требовались для выяснения роли ароматических структур в ОВ диктионемового сланца. Согласно данным табл. 2, бензолкарбоновые кислоты составляют 16% от идентифицированных компонентов. Максимальный выход составил 9,4 *мг/г*, или 0,94% от ОВ сланца. Выход и состав кислот приводятся в табл. 4. Наибольшим было содержание бензойной кислоты. Поскольку она летко теряется в ходе подготовки проб к анализу, то можно предполагать, что ее действительный выход еще выше.

Трудно однозначно решить, из каких исходных структур образовались бензолкарбоновые кислоты. Однако, возможно, что бензойная кислота является продуктом деструкции моноалкилзамещенных ароматических структур. 1,3-, 1,4-, 1,3,5-Бензолкарбоновые кислоты не принадлежат к продуктам окисления конденсированных ароматических или смешанных арилоксиароматических структур, из которых могли образоваться (до половины по весу) 1,2-, 1,2,3-, 1,2,4-, 1,2,3,4-, 1,2,4,5-, 1,2,3,4,5и 1,2,3,4,5,6-бензолкарбоновые кислоты. Последние, однако, в равной

Таблица 3

Исследование органического вещества...

Таблица 4

			and a second second second			
	Положе- ние кар-	Подъем т до	емпературы 105 °C	Окисление 3 ч		
Кислоты	боксиль- ной группы	Выход	Состав	Выход	Состав	
Бензойная	1	160	26	330	35	
Ортофталевая	1.2	85	13	100	11	
Изофталевая	1.3	40 .	6	65	7	
Герефталевая	1.4	85	13	70	7	
Гемимеллитовая	1.2.3	85	13	115	12	
Гримеллитовая	1, 2, 4	20	3	50	5	
Гримезиновая	1, 3, 5	35	5	80	9	
Меллофановая	1, 2, 3, 4	65	10	65	7	
Пиромеллитовая	1, 2, 4, 5	30	5	50	5	
Бензолпентакарбо- новая	1, 2, 3, 4, 5	25	4	15	2	
Меллитовая	1, 2, 3, 4, 5, 6	10	2	следы	следы	
ZHROWALLE	Bcero:	640	100	940	100	

Состав (%) и выход бензолкарбоновых кислот от органического вещества диктионемового сланца (мг/100 г)

Рис. 2. Спектры протонного магнитного резонанса калиевых солей (обозначения см. в тексте): спектры сняты из 10%-ных растворов в D₂O при частоте 80 *МГц* с внутренним эталоном ДСС (сигналы в середине спектра принадлежат HDO).

37

степени вероятности могли образоваться и из алкилароматических, и из смешанных алициклоароматических структур.

Для установления наличия ароматических (оксиароматических) структур, помимо газохроматографического определения бензолкарбоновых кислот, продукты, полученные при окислении (трехчасовой опыт) и обработке, исследовались методом протонного магнитного резонанса (ПМР). Спектры были сняты на спектрометре TESLA BS 487 С при комнатной температуре и частоте 80 МГц из 10%-ных растворов калиевых солей органических кислот (сумма эфирных и ацетоновых экстрактов) в D₂O.

Продукты обработки и окисления характеризуются спектрами ПМР, развитыми в основном в алифатической области (рис. 2). К алифатическим протонам были отнесены сигналы в области в 0,4-3,5 м. д., а к ароматическим — 8 6,4—8,9 м. д. [20]. Из кривых интегральной записи спектров было рассчитано содержание ароматических протонов - около 10% для экстрактов нерастворимых продуктов обработки (а) и окисления (в), 4% — для растворимых продуктов окисления (∂) от общего количества протонов. Содержание ароматических протонов в щелочном экстракте (г) и продуктах, осажденных при разбавлении фильтрата водой (б), выше и составляет, соответственно, 13 и 16%. Итак, в среднем продукты трехчасового окисления содержат 8,6% ароматических протонов, что, в свою очередь, составляет 3,3% от водорода исходного сланца. В самых мягких условиях окисления последний показатель достигает 4,5%. По расчету, водород бензольных ядер определяемых газохроматографически бензолкарбоновых кислот составляет примерно 0,6% от исходного водорода.

Следовательно, определение в продуктах окислительной деструкции доли ароматических протонов является перспективным методом при изучении структуры ОВ диктионемового сланца, а также других каустобиолитов. Для исследований подобного рода целесообразно вместо оптимизации выхода низкомолекулярных кислот, определяемых газохроматографически, оптимизировать суммарный выход продуктов окислительной деструкции, растворимых в органических растворителях или в щелочи.

ЛИТЕРАТУРА

- 1. Кивимяги Э. К., Лоог А. Р. Диктионемовые сланцы Эстонской ССР. В кн.: Формации горючих сланцев. (Методы изучения и генетическая классификация). Таллин, 1973, с. 11-17.
- Иванов А., Ранг С., Эйзен О., Степнин С. О составе легких фракций смо-лы диктионемового сланца. Изв. АН ЭССР, Хим. Геол., 1973, т. 22, № 4, c. 301-305.
- 3. Ранг С., Орав А., Иванов А., Эйзен О., Степнин С. О составе фрак-
- Уант С., Орав А., Иванов А., Оизен О., Степнин С. Оснаве фрак ции смолы диктионемового сланца месторождения Тоолсе, выкипающей в пре-делах 120—190 °С. Изв. АН ЭССР, Хим. Геол., 1974, т. 23, № 1, с. 27—30.
 Ранг С., Орав А., Эйзен О. О составе фракции смолы диктионемового сланца месторождения Тоолсе, выкипающей в пределах 190—270 °С. Изв. АН ЭССР, Хим. Геол., 1975, т. 24, № 1, с. 10—14.
 Уров К. Э., Клесмент И. Р. Углеводороды в осадочном покрове на террито-риториятия составляется в составляется в садочном покрове на террито-риториятия составляется в составляется в составляется составляется составляется в составляется в составляется составляется составляется составляется в составляется состав
- рии Эстонского сланцевого месторождения. В кн.: Исследование органического вещества современных и ископаемых осадков. М., 1976, с. 292—298.
 Клесмент И. Р., Риккен Ю. Т., Уров К. Э. Особенности органического вещества диктионемовых сланцев. Горючие сланцы, 1976, № 6, с. 20—25.
- 7. Успенский В. А. Об органическом веществе диктионемового сланца. Химия
- тв. топлива, 1938, т. 9, вып. 1, с. 7—17. 8. Фомина А. С., Наппа Л. А. Углеводы и аминокислоты в керогенах древних горючих сланцев. Химия тв. топлива, 1967, № 1, с. 8—16.
- 9. Ерусенко В., Фомина А. К вопросу об окислительной деструкции керогена диктионемового сланца щелочным перманганатом калия. Сообщ. третье. — Изв. АН ЭССР, Сер. физ.-матем. и техн. н., 1966, т. 15, № 1, с. 106-112.

- 10. Бондарь Е., Вески Р., Филимонова Н., Фомина А. Об ароматических структурах керогена диктионемового сланца. - Изв. АН ЭССР, Хим., 1978, т. 27, № 3, с. 176—178.
- 11. Kirret, O., Koch, R., Ründal, L. Maardu leiukoha diktüoneemakilda ja temas sisalduva kerogeeni keemilisest koostisest. — Изв. АН ЭССР, Сер. техн. и физ.-матем. н., 1959, т. VIII, № 4, с. 243—254. 12. Гинзбург А. И., Лапо А. В., Летушева И. А. Рациональный комплекс
- петрографических и химических методов исследования углей и горючих слан-
- цев. Л., 1976. 13. Winters, K., Parker, P. L., Baalen, C. V. Hydrocarbons of blue-green algae: geochemical significance. Science, 1969, v. 163, N 3866, p. 467—468. 14. Рубан Е. Л. Бактериальные липиды. Изв. АН СССР, Сер. биол., 1974, № 2,
- c. 162-178.
- Burlingame, A. L., Simoneit, B. R. Analysis of the mineral entrapped fatty acids isolated from the Green River formation. Nature, 1968, v. 218, p. 252-256.
- 16. Simoneit, B. R., Burlingame, A. L. Carboxylic acids derived from Tasmanian tasmanite by extractions and kerogen oxidations. Geochim. et cosmochim. acta, 1973, v. 37, N 3, p. 595—610.
 17. Johns, R. B., Onder, O. M. Biological diagenesis: dicarboxylic acids in recent sediments. Geochim. et cosmochim. acta, 1975, v. 39, N 2, p. 129—136.
 18. Фомина А. С., Ильин А. И., Вески Р. Э. Окисление керогена кукерсита 58%-иой заотной кислотой при атмосфериом давлении. В ку: Сопроиме слан-ку стана.
- 58%-ной азотной кислотой при атмосферном давлении. В кн.: Горючие слан-
- цы. Химия и технология. Таллин, Ин-т химии АН ЭССР, 1961, вып. 4/5, с. 5—11. 19. Фомина А. С., Вески Р. Э., Мянник А. О. Технология химической перера-ботки керогена горючих сланцев сапропелитового типа. Химия тв. топлива, 1977, № 3, c. 170-174.
- 20. Knight, S. A. Analysis of aromatic petroleum fractions by means of absorption mode carbon-13 N. M. R. spectroscopy. - Chemistry and Industry, 1967, v. 45, p. 1920-1923.

Инститит химии Академии наук Эстонской ССР Поступила в редакцию 13/I 1978

R. VESKI, N. FILIMONOVA, Jeugenia BONDAR, T. LUMISTE, A. FOMINA

DIKTÜONEEMAKILDA ORGAANILISE AINE UURIMINE LÄMMASTIKHAPPELISE OKSÜDATSIOONI TEEL

Artiklis on esitatud alifaatsete mono-, di- ja benseenkarboksüülhapete koostised ja kogused, mis saadi diktüoneemakilda orgaanilise aine struktuuri uurimisel oksüdeeriva destruktsiooni teel lämmastikhappega. Pehme oksüdatsiooni (20% HNO₃, 1 ööpäev, toa-temperatuur) produktides määrati looduses sagedamini esinevad paarisaatomilised küllastunud monokarboksüülhapped: müristiin-, palmitiin- ja steariinhape. Kilda oksüdeeri-misel (58% HNO3, 105 °C, 3 h) saadi teise ordoviitsiumi põlevkivi, kukersiidiga võrreldes tunduvalt vähem karboksüülhappeid, kusjuures suhteliselt suur osatähtsus oli benseenkarboksüülhapetel (16%). See viitab diktüoneemakilda ja kukersiidi orgaanilise aine tunduvale erinevusele.

R. VESKI, N. FILIMONOVA, Eugenia EONDAR, T. LUMISTE, A. FOMINA

STUDY OF THE ORGANIC MATTER OF DICTYONEMA SHALE BY NITRIC OXIDATION

In the mild oxidation products of dictyonema shale (20% HNO₃, 24 h, at room temperature) saturated monocarboxylic acids of frequent occurrence, viz. myristic, palmitic and stearic acids, were determined.

At the oxidation of dictyonema shale (58% HNO3, 105°C, 3 h) considerably fewer carboxylic acids were obtained in comparison with kukersite, the other Ordovician oil shale, but the former consisted of benzene carboxylic acids (16%). This is indicative of the differences between the organic matter of dictyonema shale and kukersite.