EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. 28. KÕIDE KEEMIA, 1979, NR. 1

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 28 ХИМИЯ. 1979, № 1

https://doi.org/10.3176/chem.1979.1.03

Айме МЕЙСТЕР, Сильвия РАНГ, О. ЭЙЗЕН

УДК 547.313: 543.544.25

ИССЛЕДОВАНИЕ АДСОРБЦИИ *н*-АЛКЕНОВ И *н*-АЛКИНОВ НА ГРАФИТИРОВАННОЙ ТЕРМИЧЕСКОЙ САЖЕ

В настоящей статье рассматриваются корреляции между некоторыми молекулярными параметрами и термодинамическими характеристиками адсорбции *н*-алканов, *н*-алкенов и *н*-алкинов C₆—C₁₀ на графитированной термической саже. Работа является продолжением цикла исследований [¹⁻⁷], проводимых с целью изучения применения газо-адсорбционной хроматографии для исследования структуры и межмолекулярных взаимодействий при адсорбции.

При обработке экспериментальных данных были использованы следующие зависимости [^{8, 9}]:

$$\lg K_1 = B + A \frac{1}{T} = \frac{\overline{\Delta S_1}^* + R}{2,303R} - \frac{\overline{\Delta U_1}}{2,303R} \frac{1}{T}, \qquad (1)$$

$$-\Delta U_1 = A 2,303R,$$
 (2)

$$-\overline{\Delta U}_{1} = \overline{\Delta U}_{1n} + \frac{4.6 \cdot 10^{-5} T_{1} T_{2}}{T_{2} - T_{1}} [b_{T_{1}} \Delta I + \Delta b (I_{T_{1}} - 100n)], \qquad (3)$$

$$\Delta S_1^* = 2,303R \cdot B - R,\tag{4}$$

$$q_{st,1} = RT^2 d \ln (K_1/T) dT = -\overline{\Delta U_1} + RT,$$
(5)

- где K_1 константа Генри, *мкм*, равная удерживаемому объему, отнесенному к единице поверхности адсорбента для нулевой дозы адсорбата, $V_{s, 1}$ [^{2, 7}];
 - А, В константы, рассчитанные методом наименьших квадратов по величинам K₁ на ЭВМ;
 - R универсальная газовая постоянная (R=8,3147 Дж/моль. •град);
 - T температура в К (273,15 + температура колонки, °С);
 - ΔS_1^* стандартное дифференциальное мольное изменение энтропии, $Д \mathscr{M} / \mathscr{M} oлb \cdot \mathfrak{r} pad;$
 - $\overline{\Delta U_1}$ дифференциальное мольное изменение внутренней энергии адсорбата, $\kappa \mathcal{I} \mathscr{R} / \mathit{моль}$;
 - ΔU_{1n} дифференциальное мольное изменение внутренней энергии *н*-алкана с *n* атомами углерода, *кДж/моль*;
 - I индекс удерживания [³];
 - b наклон прямой линейной зависимости lg K₁ n для н-алканов [⁶];

۰,				
2	1	-		
	ŝ		٢	1
	2	3	ł	
	5	2	ł	
¥.		5		
1		1	l	
-	1	4	٢	

Константы A и B уравнения (1), значения $-\overline{\Delta U}_1, \overline{\Delta S}_1^*$ и $q_{st, 1}$ при адсорбции *и*-алканов, *и*-алкенов и *и*-алкинов C_6-C_{10} на графитированной термической саже

100 mm	Tewnens-	Интепнал	температу	TK		105	-	**' <u>///</u>	* 27-	
Адсорбат	тура ки- пения, °С	0T	од	Теред.	B	А	— ДОС/моль КДж/моль	(среднее), кДж/моль	Дж/моль.	qst, 1 кДж/моль
<i>ч</i> -Гексан	68,74	348,15 348,2[⁸]	448,15 453,2[⁸]	398,15 400,7[⁸]	-5,0264 $-4,816[^8]$	2068,92 2003,5[⁸]	39,62 38,4[⁸]	D R (-104,56	42,93
1-Гексен quc-2-Гексен	63,49 68,84 67,88	348,15 348,15 348,15	448,15 448,15 448,15	398,15 398,15 308,15	-4,9389 -4,9310 -5,0707	1982,71 1969,03 9063 51	37,97 37,70 30,51	40,43 40,81	-102,89 -102,74	41,28 41,01
<i>трины</i> -2-1 ексен <i>цис</i> -3-Гексен <i>транс</i> -3-Гексен	66,45 67,09	348,15 348,15	448,15	398,15 398,15 398,15	-5,0183 -5,0656	1996,39 2026,33	38,23 38,80	39,96 39,96	-103,41 -104,41 -105,32	41,54
1-Гексин 2-Гексин 3-Гексин	71,38 84,52 81,43	348,15 348,15 348,15 348,15	448,15 448,15 448,15	398,15 398,15 398,15	-5,0300 -5,2735 -4,9507	$\begin{array}{c} 1967,67\\ 2103,85\\ 1940,24\end{array}$	37,68 40,29 37,15	39,28 42,21 40,30	-104.63 -109.30 -103.11	40,99 43,60 40,46
н-Гептан	98,43	348,15 423,2[⁸]	448,15 473,2[⁸]	398,15 448,2[⁸]	-5,3478 $-4,995[^8]$	2409,79 2292,3[⁸]	46,14 44,0[⁸]	ROP	-110,72	49,45
1-Гептен 4ис-2-Гептен транс-2-Гептен 4ис-3-Гептен транс-3-Гептен	93,64 98,50 97,95 95,75 95,67	348,15 348,15 348,15 348,15 348,15 348,15	448,15 448,15 448,15 448,15 448,15	398,15 398,15 398,15 398,15 398,15	-5,3300 -5,1725 -5,2837 -5,2052 -5,2192	$\begin{array}{c} 2350,66\\ 2264,70\\ 2340,97\\ 2254,38\\ 2254,38\\ 2295,92\end{array}$	45,01 43,37 44,83 43,17 43,17	44,30 44,12 45,34 42,61 44,39	-110,38 -107,36 -109,49 -107,99 -108,26	48,32 46,68 48,14 46,48 47,27
1.Гептин 2.Гептин 3.Гептин	99,78 111,25 107,0	373,15 373,15 373,15	473,15 473,15 473,15	423,15 423,15 423,15	-5,2213 -5,4057 -5,3413	2260,69 2357,03 2298,80	43,29 45,13 44,02	44,72 46,14 44,32	-108,30 -111,83 -1110,59	46,81 48,65 47,54
н-Октан	124,67	398,15 413,2[⁸]	498,15 486,2[⁸]	448,15 449,7[⁸]	-5,5488 $-5,1655[^8]$	2696,32 2576,3[⁸]	51,63 49,4[⁸]		-114,57	55,36
1-Октен цис-2-Октен транс-2-Октен цис-3-Октен транс-3-Октен	121,30 125,63 124,95 122,96 123,28	398,15 398,15 398,15 398,15 398,15 398,15	498,15 498,15 498,15 498,15 498,15	448,15 448,15 448,15 448,15 448,15 448,15	-5,4621 -5,4931 -5,6058 -5,1961 -5,3316	$\begin{array}{c} 2602,44\\ 2599,63\\ 2685,50\\ 2460,51\\ 2544,25\end{array}$	49,83 49,78 51,42 47,12 48,72	49,76 49,38 51,04 47,53 49,47	-112,91 -113,50 -115,66 -107,81 -110,41	53,56 53,51 55,15 50,85 52,45

51,88 53,81	51,99 53,98 51,20 50,97	58,57	$\begin{array}{c} 58,48\\ 57,28\\ 58,63\\ 57,46\\ 56,07\\ 57,52\\ 57,52\\ \end{array}$	57,51 58,75 58,83 57,30	64,16	62,04 63,70 65,80 62,19 61,82 59,67 63,71	$\begin{array}{c} 64,10\\ 65,91\\ 63,28\\ 62,29\\ 59,25\\ 59,25 \end{array}$
-111,63 -113,76	-110,70 -114,36 -110,18 -109,68	-112,61	$\begin{array}{c} -115,42\\ -112,91\\ -114,95\\ -114,25\\ -114,25\\ -111,90\\ -111,90\\ -113,18\end{array}$	-114,87 -117,06 -118,45 115,87	-116,74	-114,49 -118,17 -118,17 -111,28 -115,08 -111,46 -111,46 -1118,24	-120,45 -123,84 -120,14 -118,48 -112,59
47,08 49,41	49,27 49,65 48,64 47,20		$\begin{array}{c} 54,88\\ 54,34\\ 55,444\\ 53,27\\ 54,78\\ 54,78\\ 51,77\\ 53,74\end{array}$	54,20 54,43 53,43 51,82		$\begin{array}{c} 59,22\\ 58,46\\ 57,48\\ 55,70\\ 58,18\\ 56,83\\ 56,83\\ 57,63\end{array}$	58,14 60,35 58,77 57,18 56,12
10.00		8]	and A America Samala		8]		
48,15 50,08	48,16 50,15 47,37 47,14	54,74 55,6[54,65 53,455 55,00 55,03 54,69 52,24 53,63	53,62 54,94 54,94 53,41	60,23 60,2[58,11 59,77 51,87 58,26 57,89 55,74 59,78 59,78	60,08 61,89 59,26 58,27 55,23
2514,55 2615,37	2515,22 2618,90 2473,73 2461,82	2858,45 2894,4[⁸]	$\begin{array}{c} 2854,01\\ 2791,17\\ 2872,47\\ 2850,75\\ 2856,26\\ 2728,10\\ 2803,83\\ \end{array}$	2800,03 2865,10 2868,997 2788,98	3145,53 3138,4[⁸]	3034,69 3121,52 3230,76 3042,47 3023,21 2910,78 3121,65	3137,32 3232,13 3094,94 3042,79 2884,11
-5,3952 -5,5066	-5,3466 -5,5378 -5,3195 -5,2937	-5,4466 $-5,4435[^8]$	$\begin{array}{r} -5,5934\\ -5,4622\\ -5,5688\\ -5,5320\\ -5,5784\\ -5,4796\\ -5,4764\\ \end{array}$	-5,5647 -5,6787 -5,7516 -5,7516 -5,6166	-5,6622 $-5,499[^8]$	-5,5447 -5,7371 -5,7371 -5,6279 -5,6279 -5,5168 -5,7407 -5,7407	-5,8561 -6,0330 -5,8396 -5,7532 -5,4456
448,15 448,15	460,65 460,65 460,65 460,65	460,65 475,7[⁸]	$\begin{array}{r} 460,65\\ 460,65\\ 460,65\\ 460,65\\ 460,65\\ 460,65\\ 460,65\\ 65\\ 65\\ 65\\ 65\\ 65\\ 65\\ 65\\ 65\\ 65\\ $	468,15 468,15 468,15 468,15 468,15	473,15 495,7[⁸]	473,15 473,15 473,15 473,15 473,15 473,15 473,15 473,15	483,15 483,15 483,15 483,15 483,15 483,15
498,15 498,15	498,15 498,15 498,15 498,15	498,15 498,2[⁸]	498,15 498,15 498,15 498,15 498,15 498,15 498,15	498,15 498,15 498,15 498,15	498,15 523,3[⁸]	498,15 498,15 498,15 498,15 498,15 498,15 498,15	508,15 508,15 508,15 508,15 508,15 508,15
398,15 398,15	423,15 423,15 423,15 423,15	423,15 453,2[⁸]	$\begin{array}{c} 423,15\\ 423,15\\ 423,15\\ 423,15\\ 423,15\\ 423,15\\ 423,15\\ 423,15\end{array}$	438,15 438,15 438,15 438,15 438,15	448,15 468,2[⁸]	448,15 448,15 448,15 448,15 448,15 448,15 448,15 448,15	458,15 458,15 458,15 458,15 458,15
122,55	$\begin{array}{c} 126,25\\ 138,00\\ 133,14\\ 131,57\end{array}$	150,8	$\begin{array}{c} 146.87\\ 150.79\\ 150.06\\ 147.98\\ 147.98\\ 148.18\\ 147.39\\ 147.77\end{array}$	150,8	174	$\begin{array}{c} 170,57\\ 174,24\\ 174,24\\ 173,33\\ 171,34\\ 171,45\\ 171,45\\ 170,72\\ 170,82\\ 170,82\\ 170,47\\ 171,32\end{array}$	173,87 183,65 178,82 177,37 177,37
с-4-Октен инс-4-Октен	КТИН КТИН КТИН КТИН	Іонан	Іонен -2-Нонен <i>ис-2</i> -Нонен -3-Нонен <i>ис-</i> 3-Нонен <i>ис-</i> 4-Нонен <i>ис-</i> 4-Нонен	онин Юнин Онин Онин	Г екан	(ецен -2.Децен <i>нс</i> -2.Децен <i>нс</i> -2.Децен -3.Децен -4.Децен <i>нс</i> -5.Децен <i>нс</i> -5.Децен <i>нс</i> -5.Децен	(ецин (ецин (ецин (ецин (ецин
uµu	3-1-0	H-]	1-1 ци тро ци	1-1 2-1 3-1 4-1	H-1	1-1 440 770 440 440 440 440 440 440 440 440	

Исследование адсорбции н-алкенов и н-алкинов... 17

Определено по уравнению (2). Определено по уравнению (3).

* *

2 ENSV TA Toimetised. K 1 1979

Зависимость $-\overline{\Delta U_1}$ от температуры кипения адсорбата при адсорбции 1-алкинов (1), 1-алкенов (2), 2-алкинов (3), цис-2-алкенов (4) и *транс*-2-алкенов (5) на графитированной термической саже.

$$\Delta I = I_{T_2} - I_{T_4}, \quad T_2 > T_4, \\ \Delta b = b_{T_2} - b_{T_4}, \quad \Delta b < 0;$$

*q*_{st,1} — изостерическая теплота адсорбции, *кДж/моль*. В табл. 1 значения *q*_{st,1} представлены при средней температуре измерения *н*-алканов, *н*-алкенов и *н*-алкинов, соответственно.

Из результатов расчета, приведенных в табл. 1, явствует, что существует линейная зависимость между значениями $-\overline{\Delta U}_1$, с одной стороны, и температурами кипения [^{10, 11}] соединений данного гомологического ряда (рисунок) и числом атомов углерода в молекуле, с другой. Последняя зависимость описывается уравнением

$$-\Delta U_1 = a_0 + a_1 n, \tag{6}$$

где a_0 и a_1 — константы. Их значения, рассчитанные методом наименьших квадратов, сведены в табл. 2.

Таблица 2

Константы уравнения (6) для н-алканов, н-алкенов и н-алкинов

Construction	I*	11100100	II**		
Соединения -	<i>a</i> ₀	<i>a</i> ₁	<i>a</i> ₀	<i>a</i> ₁	
н-Алканы	10.63	4.98	_	_	
1-Алкены	9.18	4,99	11,01	4,84	
иис-2-Алкены	5,44	5,42	12,26	4,65	
транс-2-Алкены	6,61	5,49	12,71	4,74	
иис-З-Алкены	7,67	5,05	8,22	4,99	
транс-З-Алкены	9,68	4,89	12,21	4,64	
иис-4-Алкены	17,89	3,80	4,09	5,31	
транс-4-Алкены	10,87	4,85	11,68	4,69	
1-Алкины	4,46	5,51	11,42	4,71	
2-Алкины	8,12	5,29	14,56	4,50	
З-Алкины	4,44	5,51	11,36	4,73	
4-Алкины	2,86	5,57	4,03	5,35	

I — рассчитаны по уравнению (2) для углеводородов C₆—C₁₀.

** II — рассчитаны по уравнению (3) для углеводородов C₆—C₁₁.

Инкременты — ΔU_1 (величины a_1) на СН₂-группу для *н*-алканов, *н*-алкенов и *н*-алкинов обладают близкими значениями — в среднем около 5,0 *кДж/моль*.

Из данных табл. 1 видно, что различия между значениями $-\Delta U_1$, полученными с помощью уравнений (2) и (3), составляют в среднем $\pm 0.97 \ \kappa \square m/monb$ ($\pm 2.07\%$ отн.), т. е. лежат в пределах средней погрешности определения этих величин.

Значения $q_{st, 1}$, определенные методами: 1) из линейных зависимостей lg ($V_{s, 1}/T$) от 1/T [^{2, 7}], 2) по индексам удерживания [^{5, 6}] и 3) по уравнению (5), совпадают. Так, различия между результатами первого и второго методов в среднем ±1,91% (отн.), а первого и третьего ±0,46% (отн.). Наиболее прост и универсален третий способ.

При равном числе атомов углерода в молекуле величины $-\Delta U_1$ увеличиваются по мере перемещения кратной связи от центра к концу цепи, для *цис*- и *транс*-алкенов наблюдается последовательность: 5-, 4-, 3-, 2-алкен; для *н*-алкинов: 5-, 4-, 3-, 1-, 2-алкин. В том же порядке увеличиваются и температуры кипения, значения индексов удерживания, удерживаемые объемы и изостерические теплоты адсорбции изомеров с кратной связью в середине цепи [^{2, 3, 10}].

Для *транс*-алкенов характерны более высокие значения I, K_1 , $q_{st,1}$ и $-\overline{\Delta U}_1$ по сравнению с соответствующими *цис*-алкенами, что объясняется разной геометрией этих молекул. Значения $-\overline{\Delta U}_1$ в среднем выше у *транс*-2-алкенов на 1,71, у *транс*-3-алкенов на 0,73 и у *транс*-4-алкенов на 2,47 кДж/моль, чем у соответствующих *цис*-алкенов.

Введение тройной связи в молекулу адсорбата вместо двойной приводит к понижению значений I и K_1 , несмотря на то, что *н*-алкины имеют высшие температуры кипения. Однако при одинаковых числе атомов углерода и положении кратной связи в молекуле значения $-\overline{\Delta U}_1$ и $q_{st,1}$ увеличиваются в порядке *цис*-алкен < н-алкин < транс-алкен < н-алкан, что объясняется прежде всего разными температурными зависимостями Таблица З

Инкременты двойной и тройной связей

Положе-		$\Delta(-\overline{\Delta U_1})$	
ние кратной связи в молекуле	алкан, <i>цис-</i> алкен	алкан, алкин	алкан, <i>транс-</i> алкен
2 3 4	1,66 2,39 3,49	0,01 1,92 2,59	0,05 1,66 1,02

удерживания *н*-алкенов и *н*-алкинов, определяемыми особенностями их молекулярной структуры [³]. Средние различия в значениях $-\overline{\Delta U_1}$ между *н*-алканами и *цис*-алкенами [$\Delta(-\overline{\Delta U_1})_{aлкан, цис-алкен}$], *н*-алканами и *н*-алкинами [$\Delta(-\overline{\Delta U_1})_{aлкан, алкен}$], *н*-алканами и *гранс*-алкенами [$\Delta(-\overline{\Delta U_1})_{aлкан, транс-алкен}$] зависят от

положения кратной связи (табл. 3).

В удерживании 1-алкенов и 1-алкинов геометрические факторы играют меньшую роль, и более высокие значения — ΔU_1 (в среднем на 0,55

кДж/моль) для первых соединений обусловлены главным образом бо́льшим числом атомов водорода (контактирующих центров) в их молекуле.

Величины $-\overline{\Delta U_1}$ *н*-алкенов и *н*-алкинов могут быть рассчитаны из значений $-\overline{\Delta U_1}$ соответствующих *н*-алканов по следующим уравнениям:

1-алкены: $-\overline{\Delta U_1} = -\overline{\Delta U_1}_{H-алкан} - 1,45 + 0,01 n,$ *цис*-2-алкены: $-\overline{\Delta U_1} = -\overline{\Delta U_1}_{H-алкан} - 5,19 + 0,44 n,$ *транс*-2-алкены: $-\overline{\Delta U_1} = -\overline{\Delta U_1}_{H-алкан} - 4,02 + 0,51 n,$ *цис*-3-алкены: $-\overline{\Delta U_1} = -\overline{\Delta U_1}_{H-алкан} - 2,96 + 0,07 n,$ *транс*-3-алкены: $-\overline{\Delta U_1} = -\overline{\Delta U_1}_{H-алкан} - 0,95 - 0,09 n,$ *цис*-4-алкены: $-\overline{\Delta U_1} = -\overline{\Delta U_1}_{H-алкан} + 7,26 - 1,18 n,$ *транс*-4-алкены: $-\overline{\Delta U_1} = -\overline{\Delta U_1}_{H-алкан} + 0,24 - 0,13 n,$ 1-алкины: $-\overline{\Delta U_1} = -\overline{\Delta U_1}_{H-алкан} - 6,17 + 0,53 n,$ 2-алкины: $-\overline{\Delta U_1} = -\overline{\Delta U_1}_{H-алкан} - 6,19 + 0,53 n,$ 4-алкины: $-\overline{\Delta U_1} = -\overline{\Delta U_1}_{H-алкан} - 7,77 + 0,59 n.$

При увеличении числа атомов углерода в молекуле адсорбата значения ΔS_1^* уменьшаются вследствие снижения подвижности молекул (табл. 1).

Выводы

При хроматографическом разделении *н*-алкенов и *н*-алкинов на графитированной термической саже преобладающее значение в удерживании имеют геометрия молекул и число атомов углерода и водорода в молекуле, но заметную роль играют также характер и положение кратной связи.

Величины дифференциальных мольных изменений внутренней энергии адсорбата — $\overline{\Delta U_1}$ увеличиваются линейно с повышением температуры кипения и числа атомов углерода в молекуле. Приведены уравнения последней зависимости, позволяющие предсказать — $\overline{\Delta U_1}$ высших изомеров, а также инкременты — $\overline{\Delta U_1}$ на CH₂-группу, двойной и тройной связей.

При одинаковых числе атомов углерода и положении кратной связи

в молекуле изменение значений $-\Delta U_1$ (цис-алкен<н-алкин<транс-алкен < н-алкан) не соответствует последовательности элюнрования адсорбатов из хроматографической колонки (н-алкин < цис-алкен < транс--алкен < н-алкан), что может быть объяснено разными температурными зависимостями удерживания соединений этих гомологических рядов, определяемыми особенностями их электронной и геометрической структуры.

При равном числе атомов углерода в молекуле значения $-\Delta U_1$ циси транс-алкенов увеличиваются по мере перемещения двойной связи от центра к концу молекулы, для н-алкинов наблюдается порядок: 5-, 4-, 3-, 1- и 2-изомеры.

Сравнение методов определения термодинамических функций адсорбции по удерживаемым объемам и по индексам удерживания свидетельствует о хорошем совпадении результатов, но последний метод является более простым и универсальным.

ЛИТЕРАТУРА

- 1. Ранг С., Пильт А., Эйзен О. Газохроматографическое разделение ненасыщенных углеводородов на графитированной саже. 1. Нормальные алкены С6-С10. -
- Har y actor of the participation of the second se N 10, р. 448—454. 3. Пильт А., Ранг С., Эйзен О. Индексы удерживания н-алкенов и н-алкинов
- С6-С1 на графитированной термической саже. Изв. АН ЭССР. Хим. Геол., 1972, т. 21, № 1, с. 30—38. 4. Пильт А., Ранг С., Эйзен О. Газохроматографическое разделение ненасыщен-
- ных углеводородов на графитированной саже. 2. Нормальные алкины С₆—С₁₁. Изв. АН ЭССР. Хим. Геол., 1972, т. 21, № 2, с. 108—115. 5. Пильт А., Ранг С., Эйзен О. Вычисление теплот адсорбции *н*-алкинов С₆—С₁₀.

- Пильт А., Ранг С., Эйзен О. Вычисление теплот адсорбции н-алкинов C₆—C₁₀ на графитированной термической саже по индексам удерживания. Изв. АН ЭССР. Хим. Геол., 1972, т. 21, № 3, с. 271—273.
 Пильт А., Ранг С., Эйзен О. Вычисление теплот адсорбции по индексам удер-живания. Изв. АН ЭССР. Хим. Геол., 1972, т. 21, № 4, с. 318—320.
 R ang, S. A., Eisen, O. G., Kiselev, A. V., Meister, A. E., Shcherbako-va, K. D. Gas chromatographic investigation of adsorption of C₆—C₁₀ normal alkynes on graphitized thermal carbon black. Chromatographia, 1975, v. 8, N 7, p. 327—330.
 Авгуль Н. Н. Киссалов, А. Р. Поликов, П. С. 1993.
- 8. Авгуль Н. Н., Киселев А. В., Пошкус Д. П. Адсорбция газов и паров на однородных поверхностях. М., 1975, с. 366.
- Golovnya, R. V., Arsenyev, Yu. N. Gas chromatographic method for determination of enthalpy of solution from retention indices. Chromatographia, 1970, v. 3, N 10, p. 455—461.
 Эльвельт А. А. Исследование физико-химических свойств изомеров положения 1077.
- связи и конфигурации нормальных алкенов. Автореф. канд. дис. Тарту, 1977.
- 11. Эльвельт А., Эйзен О. О физико-химических характеристиках изомерных *н*-децинов. Изв. АН ЭССР. Хим., 1978, т. 27, № 1, с. 54—56.

Институт химии Академии наук Эстонской ССР Поступила в редакцию 24/IV 1978

21

Aime MEISTER, Silvia RANG, O. EISEN

n-ALKEENIDE JA n-ALKÜÜNIDE ADSORPTSIOON TERMILISELT GRAFIIDITUD TAHMAL

Artiklis on toodud *n*-alkaanide, *n*-alkeenide ja *n*-alküünide C_6 — C_{10} diferentsiaalsete siseenergia moolmuutuste ($-\overline{\Delta U_4}$) arvutamise tulemused. On leitud, et $-\overline{\Delta U_4}$ väärtused suurenevad keemistemperatuuri ja süsinikuaatomite arvu suurenedes lineaarselt, ja esitatud vastavate sirgjooneliste sõltuvuste võrrandid. Võrdse süsinikuaatomite arvu puhul molekulis suurenevad *cis*- ja *trans*-alkeenide – $\overline{\Delta U_4}$ väärtused kaksiksideme nihkudes ahela keskelt ahela otsa, *n*-alküünidel aga järjekorras 5-, 4-, 3-, 1- ja 2-alküün.

Aime MEISTER, Silvia RANG, O. EISEN

INVESTIGATION OF ADSORPTION OF *n*-ALKENES AND *n*-ALKYNES ON THERMAL GRAPHITIZED CARBON BLACK

The molar changes of the differential internal energy $(-\Delta U_1)$ of adsorption, on thermal graphitized carbon black, of C₆—C₁₀ *n*-alkenes and *n*-alkynes have been calculated and correlated with the molecular structure of isomers.

The $-\Delta U_1$ values increase linearly with the increase of the boiling temperature and the number of carbon atoms n in the molecule; the linear relationship between $-\overline{\Delta U_1}$ and n is given in an equation form. The $-\overline{\Delta U_1}$ values of *cis*- and *trans*-alkenes increase with the shift of the double bond from the centre towards the end of the molecule; for *n*-alkynes the following order is observed: 5-, 4-, 3-, 1-, 2-isomers.