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Abstract. Relationships were sought between temperature, salinity, and the density of mysid
species in the Gulfof Riga. Most of the variability in the distribution of Mysis mixta,M.-relicta, and

Neomysis integer can be explained by the temperature. M. relicta is confined to the deeper parts of

the gulf where temperature is constantly low. N. integer migrates to the coastal areas in late spring.
Its production increases with water temperature in summer. In the course of summer, as the depth of

the thermocline increases, Neomysis invades deeper areas. Similar migration takes place on the

other side of the thermocline where M. mixta avoids the expanding warm water. The distribution of

mysid populations becomes more homogeneous after storms in autumn. The distribution pattern of

Praunus spp. is positively influenced by the density of benthic vegetation.
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INTRODUCTION

A total of 18 mysid species have been found in the Baltic Sea (K6hn, 1992).
Because of their high abundance and wide distribution, mysids are an important

component in the Baltic Sea ecosystem. Mysids are omnivorous, feeding on

phyto- and zooplankton, seston, and degrading parts of phytobenthos (Kinne,
1955; Arndt & Jansen, 1986). Mysids are preyed by several fish species, among

these Baltic herring (Clupea harengus membras L.), flounder (Pleuronectus

flesus L.), and eelpout (Zoarces viviparus L.) (e.g., Kostrichkina, 1968; Oyaveer,
1983).

To survey mysid populations, a specific sampling technique is required as

traditional methods for studies of zooplankton and zoobenthos are inefficient in
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describing the quantitative distribution of mysids. This is the reason why the life

history of mysids is relatively poorly known.

Only five species of mysids occur in the Gulf of Riga (Yarvekyulg, 1979).
These are Neomysis integer (Leach), Mysis mixta Lilljeborg, M. relicta Lovén,
Praunus flexuosus Miiller, and P. inermis Rathke. The changes in their abundances

and biomasses have been estimated in Parnu Bay and adjacent sea areas in June—

July (Yarvekyulg, 1979).
The purpose of this study was to quantify the distribution of mysids in a much

larger area of the Gulf of Riga, describe their horizontal (seasonal) migration, and

relate the distribution and migration to hydrological conditions.

MATERIAL AND METHODS

The studied area embraces more than 2/3 of the total area of the Gulf of Riga,
including the deepest parts of the gulf (Fig. 1). The bottomrelief of the study area

Fig. 1. Study area with sampling stations in the Gulf of Riga.
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is relatively flat with gentle slopes towards deeps. The average distance between

sampling sites was 6 km on plains and 1 km on deeper slopes.
Samples collected in daytime during the ice-free seasons in 1974-75 (total

of 531 samples) were used. Thus, this study represents a situation where the

eutrophication level was much lower than nowadays. Hence, physical properties
of the sea, e.g. salinity and temperature, influenced the distribution of mysids
more than the pollution load. A modified Rass dredge (Rass, 1933; Fig. 2) was

used for sampling. The dredge is made of three identical nylon netbags, which are

attached to a rectangular metal frame. The mesh size of the nets was 0.4 mm.

During the sampling the openings of netbags were located 0-0.2, 0.2-0.5, and

0.5-0.8 m from the sediment surface. The dredge was towed on a rotating metal

cylinder (stone, gravel, sand, hard clay bottoms) or sledge (silty hard clay

bottoms). This dredge is unsuitable for sampling on silty sediment where the

mesh will be clogged up.
Pilot sampling with different types of nets indicated that the daytime

distribution of mysids is restricted to less than 1 m above the bottom, making the

Rass dredge a suitable tool in this study. Prior to the data analysis all mysids

caught in three nets were pooled together.
At the beginning of the sampling the dredge was slowly lowered while the

ship was moving. The speed was slowed down when the length of the submerged
wire rope exceeded that of depth two times. When the dredge touched the bottom

(checked by hand), the speed was kept at approximately 1 km h™'. By the end of

the sampling (100 m, 5 min) the speed was increased so that the dredge raised

above the bottom and the wire was pulled in. The amount of water that passed

through the mesh during the sampling on the bottom was 17+3 m’.

Occasionally, 10 replicate samples were collected from a sampling site. The

standard error did not exceed 10% of the average abundance and biomass values.

Hence, we may conclude that the method provides us reliable relative estimates

of population densities.

All samples were stored in 4% buffered formaldehyde—seawater solution. The

species composition, abundance, and biomass were determined in the laboratory.

Fig. 2. A modified Rass dredge (Rass, 1933).
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The values of salinity, temperature, and oxygen content were recorded during
each sampling. The database of the Estonian Hydrometeorological Institute was

used to describe the hydrology of the Gulf of Riga during 1974-90.

RESULTS

Hydrology

Until late May no clear thermocline occurs in the Gulf of Riga and the water

is cold. Later the surface water temperature rises to about 17-19°C and a

thermocline builds up. The thermocline reaches a depth of 25 m in August and

disintegrates in September—October due to intensive wind mixing. Figure 3 shows

the monthly temperature dynamics of surface water in the study area. The

changes in water temperature were close to the average in 1974 whereas the

values were much higher in 1975.

In most parts of the Gulf of Riga the salinity is 5-6.5%0, with lower values

close to the mouth of the Pdrnu and Daugava rivers and higher values at Irbe

Strait. During spring and summer the salinity is the highest in bottom layers and

the lowest in the surface layer (Berzinsh, 1995). Salinities were slightly higher
than average in 1974-75.

The oxygen regime of the Gulf of Riga is relatively good. In most areas

oxygen concentrations are higher than 5 ml L. Concentrations down to 2 ml L™

have occasionally been found in the deepest part of the gulf (>45 m).

Fig. 3. Surface temperatures of Pdrnu Bay.
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Distribution ecology

Abundances and biomasses of mysids were correlated to bottom water

temperature and to some extent to salinity (Table 1). The latter correlation is

probably the result of covariation between temperature and salinity.

Neomysis integer is the most prevalent species in the Gulf of Riga. It

dominated at depths above 10 m but was also abundant at deeper study sites.

The highest abundances and biomasses of the species were found at 20-30 m

depths in spring and at 10 m in June-July. This indicates a migration from deep
water to coastal areas in late spring. The summer development of the population
of N. integer is influenced by the water temperature. High temperatures favour

breeding and the abundance and biomass increase. In August the bulk of

the population leave shallow coastal areas and return to deeper, i.e. over-

wintering regions. The migration is linked to the changes in the distribution

of the fronts of temperature. The highest abundances and biomasses were

found south-west from Kihnu Island and east from the Kolka Peninsula. Both

areas are characterized by steep slopes and hence, strong gradients in water

temperature. Winter mortality was much higher in the Kolka area. As a result,
N. integer remained abundant only in the vicinity of Kihnu Island (Figs. 4,5;

Table 2).

Variable — Salinity

Abundance

Neomysis integer 0.32 -0.16

Mysis mixta -0.11 0.17

M. relicta -0.26 0.11

Praunus flexuosus 0.08 -0.05

P. inermis 0.13 -0.06

Biomass

Neomysis integer 0.27 -0:13

Mysis mixta -0.14 0.15

M. relicta -0.25 0.09

Praunus flexuosus 0.08 -0.04

P. inermis 0.13 --0.07

Table 1. The values of correlation coefficient between abiotic and biotic variables. Numbers in bold

are significant at p < 0.05 (n = 349)
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Fig. 4. Biomass distribution of

Neomysis integer in 1974 (g m™).

Fig. 5. Biomass distribution of Neomysis integer in 1975 (g m™).
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Mysis mixta and M. relicta inhabit depths below 5 m. M. mixta prefers
intermediate depths (1040 m) whereas M. relicta 1s mostly confined to the

deepest part of the gulf (20-55 m). The highest abundances of M. mixta

and M. relicta were found at 6-9 and 3-5°C, respectively. Both species were

particularly abundant at steeper slopes where very strong temperature gradients
were observed. Juveniles of the species were often found in shallow areas

(5-10 m) in April-June (Figs. 6-9, Table 2), where they can be found at up to

16 and 18°C, respectively. The abundances of M. relicta were relatively low

in the sea areas close to Ruhnu Island. Occasionally low oxygen concentrations

(<2 mL L") were measured only in Ruhnu deep during June-July.
There is a tendency that the individuals of M. mixta perform migration

towards deeper areas in June-July. The migration is more marked and takes

place earlier in warmer summers. However, the process is not so clear as for

N. integer.
Praunus flexuosus and P. inermis inhabit only coastal areas at depths up to

about 20 m. P. inermis has a wider distribution area, higher abundances and

biomasses than P. flexuosus (Figs. 10, 11). P. flexuosus and P. inermis have the

highest biomasses in the vicinity of Abruka and Kihnu islands and P. inermis in

the coastal sea of Ruhnu Island. Nevertheless, the share of Praunus in the total

mysid stock is fairly low.

Both species are phytophilous and are found in the areas where abundant

benthic vegetation occurs. These species spend all their life-cycle within the

phytobenthic zone and unlike the previous species never perform extensive

seasonal migrations to deeper areas. We never found both Praunus species in the

same sample.

Time
Neomysis integer

A|B ]| A|B[ Aa | B

Table 2. Average abundance (A, ind m™ + SE) and biomass (B, g m™ + SE) values of dominant

species of mysids during different months in 1974 and 1975

April, 1974 28+£0.7 0.12+0.03 47«14 0.09+£0.03 8.0+£2.1 0.08+0.02

June, 1974 353+79 0.13x0.03 12.1£29 0.14+0.04 3.0£0.7 0.05%0.02

July, 1974 182+3.6 0.19+0.06 125+3.6 0.11+£0.03 39+£1.2 0.03+0.01

April, 1975 22+0.5 0.02+0.01 1.2+03 0.01£0.003 3.3+0.8 0.02+0.01

June, 1975 11.6£29 0.05+0.01 28+0.7 0.03+0.01 4.0+0.9 0.02+0.004

July, 1975 126+27 0.16+0.04 11.1£39 0.12+0.04 5118 0.03+0.01

August, 1975 5.0+1.5 0.12+0.03 102+33 0.15£0.05 229+43 0.14+0.02
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Fig. 6. Biomass distribution of

Mysis mixta in 1974 (g m™).

Fig. 7. Biomass distribution of Mysis mixta in 1975 (g m™).



292

Fig. 8. Biomass distribution of

Mysis relicta in 1974 (g m™).

Fig. 9. Biomass distribution ofMysis relicta in 1975 (g m™).
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Fig. 10. Distribution ofPraunus spp. along depth gradient in 1974 and 1975

Fig. 11. Average abundance and biomass values ofPraunus spp. with standard error and 95%

confidence interval values in different regions.
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DISCUSSION

Among the measured parameters water temperature plays the major role in

determining the distribution and migration pattern of mysids. The Gulf of Riga is

relatively shallow and the fluctuations in air temperature are also reflected in

deep water.

N. integer and Praunus species are considered to be warmth loving whereas

Mysis species prefer lower temperatures (Yarvekyulg, 1979). As a rule, warmth

loving species are confined to areas of higher water temperatures.
The seasonal migrations of N. integer during warm years may be summarized

as follows. The species is almost uniformly distributed in the Gulf ofRiga during
November-May. When the temperature rises in June-July, the bulk of the

population migrate to the coastal areas of Pdrnu Bay and the Kolka Peninsula. As

the thermocline moves downwards N. integer extends its distribution towards

deeper regions. After the intensive water mixing in autumn Neomysis 1S again

uniformly distributed. During cold summers the density of N. integer remains

much lowerand its distribution pattern is more homogeneous.
Praunus species are confined to the phytobenthic zone. Due to a low biomass

of benthic vegetation in the study area (Kukk, 1993) these species have a

restricted distribution area, low abundances and biomasses. According to Zimmer

(1933) Praunus migrates from shallower areas to deeper areas. We did not

observe such behaviour, which might be due to the narrower depth limits of

phytobenthos distribution in the Gulf of Riga.
M. mixta cannot tolerate high temperatures and inhabits deeper areas in

warmer summers than in colder summers. M. relicta prefers even colder

temperatures than M. mixta (Zimmer, 1933), occurring only at depths below

20 m. Hence, summer temperatures do not affect the distribution pattern of

M. relicta. |

Although temperature explains an important part of the variability in both

Mysis species, they have a patchy distribution, which cannot be related to

temperature alone. Most aggregations of mysid populations coincide with steep
gradients of temperature, i.e. areas where the thermocline touches the bottom.

The frontalareas are thought tobe very productive (Barnes & Hughes, 1988)

supporting high densities of pelagic consumers, among these mysids. If Mysis

species are found at the colder side then N. integer inhabits the warmer side of the

frontalarea.
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MÜSIIDIDE LEVIK JA RANDED LIIVI LAHES

(LÄÄNEMERE PÕHJAOSA)

Ilmar KOTTA ja Jonne KOTTA

On vaadeldud veetemperatuuri, soolsuse ja miisiidiliitkide arvukuse seoseid

Liivi lahes. Temperatuur kirjeldab suuremat osa Mysis mixta, M. relicta ja

Neomysis integer leviku seaduspirasustest. M. relicta levib Liivi lahe siigava-
mates osades, kus temperatuur on piisivalt madal. N. integer rindab hiliskevadel

madalamate merealade suunas. Mida kdrgem on suvine veetemperatuur, seda

suurem on N. integer’i produktsioon. Termokliini laskumise tdttu suve jooksul
tungib liik siigavamatele aladele. Sarnaseid rindeid voib tdheldada allpool
termokliini, kus M. mixta pidevalt taganeb soojema vee pealetungi eest. Pirast

stigistorme muutub miisiidide levik jille homogeensemaks. Praunus spp. levik

soltub eelkdige pohjataimestiku rohkusest.
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