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Abstract. During the austral summer of 1997/98 measurements of downwelling irradiance,

upwelling irradiance, beam absorption coefficients, and beam attenuation coefficients were made in

the Southern Ocean aboard the research vessel S. A. Agulhas. The measurements were carried out in

three areas: in the marginal ice zone (65°-59° S, 6° E), in the Antarctic polar front (55°-49° S, 6° E),
and in the area between them, in the interfrontal region (57°-55°S, 6° E). The diffuse attenuation

coefficients calculated from the downwelling irradiance profiles were on average 0.3 m™' nm™ in

the 400 to 700 nm range. Beam absorption was dominated by water molecules and it was practically
the same in all areas. Scattering, which was calculated using the beam attenuation, was nearly
wavelength independent in the 400-700 nm range being between 0.3 and 0.6 m™' in the marginal
ice zone, 0.1 m™" in the interfrontal region, and between 0.2 and 0.3 m™' in the Antarctic polar front.

There was a good correlation between the diffuse attenuation coefficients calculated from the beam

absorption and scattering coefficients and the diffuse attenuation coefficients calculated from the

irradiance profiles. The waters in the marginal ice zone and interfrontal region were classified as

belonging to Jerlov water type Il and the Antarctic polar front water was classified as belonging to

Jerlov water type 111.

Key words: irradiance, diffuse attenuation coefficient, beam absorption coefficient, scattering
coefficient, optical classification.

INTRODUCTION

Seas around the Antarctic are very rich in nutrients because of the upwelling
of nutrient-rich Atlantic Deep water (Pickard & Emery, 1990). This causes a

vigorous phytoplankton growth that then leads to a large population of

zooplankton. Sources of terrestrial material are far away and therefore the

pigments of phytoplankton and its decay products, together with the sea water
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itself, are the main optically active substances. Such optically two-component
waters, where the components are the biological substances and the sea water,

are called Case 1 waters according to Morel (1994).
The inherent optical properties of the water, the beam absorption and

scattering coefficients, and the volume scattering function combine with the

radiant light field to produce the apparent optical properties, one of which is the

diffuse attenuation coefficient (Preisendorfer, 1961). Links between the inherent

and apparent optical properties have been sought after using for example Monte-

Carlo simulations (Kirk, 1994).
The present study was made as part of FINNARP 97 in co-operation with

SWEDARP 97/98, on board cruise number 86 of the South African research

vessel S. A. Agulhas, which belongs to the Sea Fisheries Research Institution of

South Africa. Measurements of downwelling irradiance, upwelling irradiance,
the beam absorption coefficients, and the beam attenuation coefficients were

made in January 1998 in the Southern Ocean along 6° E. The correlation between

the apparent and inherent optical properties was studied and an attempt at

classification into Jerlov water types was made using the results gained by Jerlov

(1978).

MATERIALS AND METHODS

Measurements were made in the Southern Ocean along the 6°E meridian

between 60° S and 49° S in three main areas (see Fig. 1). These areas were the

marginal ice zone (65°-59° S, 6° E), the Antarctic polar front (55°-49° S, 6° E),
and the region between them, the interfrontal region (57°-55°S, 6°E).
Measurements of downwelling and upwelling spectral irradiance were made with

an LI-1800 UW spectroradiometer, between 300 and 850 nm with a 2nm

resolution. This instrument was deployed from the aft end of the ship, and

irradiance was measured at depths of 1,3, 5,7, 10, 12, 15, and 20 m. LI-1800 UW

measurements were affected by changes in the incoming irradiance. An LI-200 SA

pyranometer was used to monitor the level of incoming total irradiance and these

data were stored as one-minute averages. These average values were then used to

correct the LI-1800 UW measurements.

Beam absorption and beam attenuation of light were measured directly at nine

wavelengths (412, 440, 488, 510, 532, 555, 650, 676, and 715 nm) using an AC-9

absorption and attenuation meter. This instrument was deployed from the

starboard side of the ship up to a maximum depth of 20 m. It measured

continuously but the water in the first 20 m was homogeneous and so the values

were averaged for the whole layer. Both instruments drifted a great deal in the

oceanic environment even though they had 25 kg weights hanging from them.

LI-1800 UW measurements are sensitive to tilt so this drift may have caused

slight errors in the measurements. The AC-9 was not affected by the drift.
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The diffuse attenuation coefficients were calculated from the spectral
irradiance profiles using an exponential law for the attenuation of irradiance.

This leads to the following expression for the diffuse attenuation coefficient Kj:

iz,4Kd(l)z—šln[—š%%], (1)
where Ej is downwelling irradiance, z is depth, and A is wavelength. Although -0

denotes zero depth it refers to just underneath the surface of the water. The

diffuse attenuation can be linked to the beam absorption and scattering
coefficients using the formula by Kirk (1994):

(2)Kaave = i,/a2 +(0.425p, — 0.190)ab ,d, ave

" Ho

Fig. 1. Map showing approximate locations of the three main study areas and the main frontal

systems. APF, Antarctic polar front; IFR, interfrontal region; MIZ, marginal ice zone.
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where the subscript ave indicates the average Ky for the zone from the surface

down to the 1% light level (the euphotic zone),L is the cosine of the refracted

photons just underneath the surface of the water, a is the beam absorption
coefficient, and b is the scattering coefficient. The scattering coefficient is equal
to ¢ —a, where c is the beam attenuation coefficient.

RESULTS

A total of ten vertical profiles of downwelling irradiance spectra were

measured. Of these six were measured in the marginal ice zone, two in the

interfrontal region, and two in the Antarctic polar front. A profile from the

marginal ice zone is shown in Fig. 2. All the profiles were very similar in shape
but the absolute level of irradiance varied with the level of the incident

irradiance. No regional variations could be detected. A slight shift can be seen

with increasing depth in the wavelength of maximum irradiance towards longer
wavelengths, from 450 nm at 3 m to 490 nm at 20 m. Spectral irradiance

measurements made using the LI-1800 UW take around 1 min to complete and in

that time the up and down motion of the ship due to waves and the induced

change in the depth of the instrument can cause errors in the spectra measured.

This effect disappears below a depth of 3—-5 m and after this depth the spectra are

no longer affected by the wave action. In Fig. 2 the measurement at 1 m has been

totally spoiled, but the values deeper down are almost totally unaffected. The

upwelling irradiance shows one maximum at approximately 470 nm and a second

one at 420 nm. This second maximum can be attributed to water fluorescence

(Jerlov, 1976).

Fig. 2. Spectral downwelling irradiance profile from the marginal ice zone.
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Diffuse attenuation coefficients were then calculated from the irradiance

spectra using Eq. (1). The coefficients were calculated separately for the whole

15 m layer and for each layer. When calculating the Ky for the different layers,
the ratio of irradiances in Eq. (1) was changed to E4(z;)/Eq4(z;) (with z; > z;) and

the depth z was replaced by the thickness of the layer (z; —z;). The diffuse

attenuation coefficients for the different layers were very similar except for the

first layer (1-3 m), which showed stronger (by almost +2 m™') attenuation in

wavelengths larger than 720 nm compared to the other layers.! The values of the

diffuse attenuation coefficients corresponding to the AC-9 wavelengths at the

different stations are shown in Fig. 3. Most of the spectra are similar to each

other except in the wavelengths above 650 nm. However, two stations situated in

the Antarctic polar front show stronger attenuation across the whole spectrum.
The diffuse attenuation coefficients, except for the two stations in the Antarctic

polar frontal region, coincide with those measured by Boucher & Prezelin (1996)
in the marginal ice zone west of the Antarctic Peninsula. On the basis of the

diffuse attenuation coefficients the water was classified as belonging to Jerlov

types II and 111. The waters of the marginal ice zone and the interfrontal region
were classified as belonging to type II and the Antarctic polar frontal water as

belonging to type 111. Jerlov (1976) classified the Southern Ocean water as being
of types II and 111 in the Pacific sector and IA in the Indian Ocean sector.

!
This may be due to two different mechanisms of wave action: (1) rapid changes in the depth of

the instrument (thus increasing or decreasing the strong attenuation in long wavelengths) or (2)
the formation of foam onto the surface of the water. Also the method used for tracking the

changes in the incident irradiance on the surface (with LI-200 SA) is not totally spectrally reliable.

Fig. 3. Diffuse attenuation coefficients for the layer from 1 to 15 m. Stations D052, DOBB, DlO5,
and D177 are in the marginal ice zone, D205 is in the interfrontal region, and D274 and D357 are

in the Antarctic polar front.
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A total of 34 AC-9 measurements were made. These were fairly evenly
distributed between the different areas. The AC-9 measurements are averages for

the layer from the surface to 20 m. Values obtained for beam absorption from the

AC-9 measurements are dominated by the absorption of light by the water

molecules. Beam absorption values are therefore practically the same in all areas.

Scattering coefficient values are almost totally wavelength independent, being
only slightly higher in the shorter wavelengths than in the longer wavelengths. In

the marginal ice zone the scattering coefficients, averaged over the wavelengths,
are between 0.3 and 0.6 m™". In the interfrontal region they are 0.1 m™ with very
little variation, and in the Antarctic polar front they are between 0.2 and 0.3 m™.

A spectrum of beam attenuation, beam absorption, and scattering from the

Antarctic polar front is shown in Fig. 4.

Values for the diffuse attenuation coefficients were also calculated from Eq.
(2) using the beam absorption and scattering coefficients. The angle of incidence

of the photons was calculated from the latitude and the time of day, which was

chosen to correspond to the LI-1800 UW measurements and it was not the

time that the AC-9 measurements had been made. These values for the diffuse

attenuation coefficients are shown in Fig. 5. The results show that the diffuse

attenuation coefficients calculated from the AC-9 measurements correlate

reasonably well with the diffuse attenuation coefficients calculated from the

measured irradiances at 1 and 15 m. The correlation coefficient is 0.83. A

comparison with the values in Fig. 3 shows that the diffuse attenuation

coefficients calculated from the AC-9 measurements do not show all the spectral
features correctly in the longer wavelengths and they do not show the larger
attenuation for the two stations in the Antarctic polar front. However, Eq. (2)

Fig. 4. Average values of AC-9 measurements of beam attenuation, beam absorption, and scattering
from the Antarcticpolar front.
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does seem to work for the marginal ice zone where the scattering coefficients are

similar to those at the two different stations in the Antarctic polar front. This

could be due to very different volume scattering functions in the waters of the

different areas, which would then indicate that the water constitution is different.

CONCLUSIONS

The optical properties in the different areas were spatially comparable to one

another. Of the diffuse attenuation coefficients calculated from the irradiance

measurements only two from the Antarctic polar front showed any significant
differences from the rest: however, the total number of measurements was very

small. The waters were classified as belonging to Jerlov water type II in the

marginal ice and interfrontal region and Jerlov water type 111 in the Antarctic

polar front. The beam absorption coefficients were dominated by the absorption
by the water molecules. Scattering varied a little in the different areas. Diffuse

attenuation coefficients calculated from the beam absorption and scattering
coefficients correlated well with the diffuse attenuation coefficients calculated

from the irradiance measurements, except in certain areas of the Antarctic polar
front where the correlation was not as good.

Fig. 5. Diffuse attenuation coefficients calculated from the beam attenuation and scattering
coefficients. The station numbers are the same as in Fig. 3 (DOO9 is in the marginal ice zone).
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LÕUNA OOKEANIL TEHTUD OPTILISTE MÕÕTMISTE
ESIALGSED TULEMUSED

Kai E. RASMUS

Alla- ja iilessuunduva pidikesekiirguse kiiritustihedust ning suunatud kiirguse
neeldumis- ja norgenemiskoefitsienti mdddeti Louna ookeanil uurimislaeva

S. A. Agulhas pardalt 16unapoolkera 1997/98. aasta suve jooksul. Modtmispiir-
kondi oli kolm: jéditsooni ddreala (65-59°S, 6° E), antarktiline polaarfront
(55-49° S, 6° E) ja nende kahe piirkonna vaheline ala, frontidevaheline regioon

(57-55° S, 6° E). Tulemused néitavad, et allasuunduva kiiritustiheduse profiilide
pohjal miidratud difuusne ndrgenemiskoefitsient (keskmistatud spektripiirkonna
400-700 nm jaoks) on 0,3 m™'. Suunatud kiirguse neeldumiskoefitsiendi virtus

formeerub pohiliselt veemolekulide toimel ja on praktiliselt sama koigis kolmes

uuritavas rajoonis. Hajumiskoefitsient, mis arvutati norgenemis- ja neeldumis-

koefitsiendi andmetest vahemiku 400-700 nm jaoks, sOltub ndrgalt valguse
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lainepikkusest, olles 0,3-0,6 m™' jiitsooni #irealal, 0,1 m™ frontidevahelises

regioonis ja 0,2-o,3m™ antarktilisel polaarfrondil. Difuusse norgenemis-
koefitsiendi védrtused, arvutatud iihelt poolt veealuse kiiritustiheduse profiilide
ja teiselt poolt suunatud kiirguse neeldumis- ja hajumiskoefitsiendi pohjal,
korrelleerusid hésti omavahel. Autori hinnangul kuuluvad jdidtsooni ddreala ja
frontidevahelise regiooni veed Jerlovi II veetiilipi, antarktilise frondi veed 111

veetüüpi.
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