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Abstract. An overview of the distribution of macrozoobenthos communities in Nova and Keibu

bays, western Gulf of Finland, is given. The dominant species ofthe region were Mytilus edulis and

Macoma balthica. The biomass of M. edulis correlated positively with the proportion of grain
particles coarser than 5 mm in the sediment and M. balthica with the proportion of silt. High
biomasses of M. edulis were found at the upwelling areas, M. balthica preferred sedimentation

areas.
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INTRODUCTION

The complexity of nearshore areas and the multitude of influencing forces

require a multidisciplinary approach and a variety of different techniques in order

to adequately describe the processes in these areas. That is findings in physics,
geology, biology, etc. should be compiled.

As Keibu and Nova bays are exposed to wave action, salinity values are

relatively high, and sandy substrate prevails, the macrozoobenthic communities

in the area are rather untypical for the entire Gulf of Finland. Previously only
Yarvekyulg (1979) has collected grab samples from a transect in Keibu Bay.
Unfortunately, no detailed description of the fauna was given.

The aim of this study was to carry out the mapping of sediment and macro-

zoobenthos in Nova and Keibu bays and in adjacent sea areas. Our main interest

was to find out the relationships between the granulometry of sediment and the

structure of macrozoobenthic communities. Traditional visual classification of

sediment types is insufficient for describing the variation in the distribution of

macrozoobenthic species.
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MATERIAL AND METHODS

Keibu and Nova bays are situated at the southern coast of the western Gulf of

Finland (Fig. 1). The area is extremely exposed to the sea. Salinity is between 6

and 8%0 in the study area. The depth interval of 0.5 and 50 m was studied, but

most stations were situated between 0.5 and 10 m. Hard bottoms, consisting of

sand or gravel, prevail in the area with the exception of a stone bottom in the

vicinity of the Ristna Peninsula. Because of bottom types and exposure the

region is practically devoid of vegetation and therefore we may neglect its effect

on macrozoobenthos.

Fig. 1. Study area.
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Sediment and macrozoobenthos sampling was performed with an Ekman-

Lenz bottom grab (400 cm2) in the shallower parts (< 15 m) and with a van Veen

bottom grab (1000 cm?) in the deeper parts of the study area. A total of 87

stations were sampled. The sample was considered representative if at least

1 L sediment was caught with the Ekman-Lenz grab and 3 L sediment with the

van Veen grab.
According to visual observation sediments were classified as follows: silt,

fine sand, medium sand, coarse sand, gravel, pebbles, stone.

For granulometrical analysis sediments were sieved using the following mesh

sizes: 0.045, 0.053, 0.063, 0.075, 0.090, 0.106, 0.125, 0.150, 0.180, 0.212, 0.250,
0.300, 0.355, 0.425, 0.500, 0.600, 0.710, 0.850, 1.000, 1.180, 1.400, 1.700,
2.000, 2.360, 2.800, 3.350, 4.000, 4.750, 5.600, 6.300, 6.700, 8.000, 10.000,

11.200, 12.500, 13.200, 16.000, and 19.000 mm. Sediment fraction smaller than

0.063 mm is defined as silt, sediments between 0.063 and 0.212 mm fine sand,
0.212-0.5 mm medium sand, 0.5-2.0 mm coarse sand, 2-10 mm gravel, and

bigger than 10 mm pebbles. The granulometrical analysis was made according to

Kask & Ramst (1992). Figure 2 depicts the distribution of bottom deposits in the

study area.

The macrozoobenthos samples were sieved through a 0.25 mm mesh and

preserved in 4% buffered formaldehyde solution. In the laboratory, animals were

counted and identified under a stereo dissecting microscope. Wet weights for

each taxon were found to the nearest 0.5 mg. Dry weights were obtained after

keeping the material at 60 °C for 48 h.

Fig. 2. Bottom deposits in Nova and Keibu bays.
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The distribution maps of the abundance and biomass of macrozoobenthos

were made with “Surfer for Windows” (Golden Software, 1994). For gridding
Kriging’s method was used. Correlation analysis was applied to describe the

relationship between different size fractions of the sediment and the density of

various functional groups of macrozoobenthos. The importance of depth and

granulometry on the structure of the macrozoobenthos community was assessed

with the help of the multidimensional scaling procedure (Krebs, 1989; Clarke &

Warwick, 1994).

RESULTS

In Keibu and Nova bays two subareas of macrozoobenthos can be

distinguished separated by the 6 m depth isobath. Shallow areas were

characterized by moderate or high abundances and very low biomasses.

Abundances varied between 200 and 4500 ind m™, the average was 750 ind m™.

Biomasses never exceeded 5 g dw m™, the average was 2.7 g dw m™, which is

about 5-10 times lower than biomasses found elsewhere in the bays of the Gulf

of Finland (e.g. Kotta, I. & Kotta, J., 1997; Kotta, J. & Kotta, 1., 1997). The

abundance was dominated by Bathyporeia pilosa Lindstréom (89%), biomasses by
small-sized Macoma balthica L. (84%) and Mytilus edulis L. (8%). Species
contributing less than 10% of the total abundance or biomass were Nereis

diversicolor (O. F. Miiller), Halicryptus spinulosus (Siebold), Corophium volutator

(Pallas), Monoporeia affinis Lindstrém, Chironomidae larvae, Cerastoderma

lamarcki (Reeve), Mya arenaria L., and Theodoxusfluviatilis (L.).
In the depths higher than 6 m the average total abundance and biomass were

respectively 790 ind m™ and 22 g dw m™. M. edulis and M. balthica comprised
the bulk of total abundance and biomass of macrozoobenthos in the area. The

share of M. balthica in the total abundance and biomass was 26 and 53%,
respectively, and for M. edulis 32 and 44%. B. pilosa comprised 18% of the

total abundance and 1% of the total biomass. N. diversicolor, H. spinulosus,
M. affinis, C. volutator, and M. arenaria were relatively common but had

very low biomasses (< 1%). As to other taxa of macrozoobenthos Oligochaeta,
Turbellaria, Pygospio elegans Claparede, Neomysis integer (Leach), Gammarus

oceanicus Segerstrale, Gammarus salinus Spooner, Asellus aquaticus (L.),

Pontoporeia femorata Kroyer, Saduria entomon (L.), Chironomidae larvae,

Lepidoptera larvae, C. lamarcki, and Hydrobia spp. occurred with very low

densities.

Figures 3 and 4 depict the distribution of the total abundance and biomass of

macrozoobenthos in Nova and Keibu bays. The highest abundances occurred in

the north-western parts of both bays and the lowest in the extensive shoals

between these areas. Two maxima of biomasses were recorded. One was situated

north from Keibu Bay and the other north-west from Nova Bay. The former
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corresponds to the areas dominated by detrivores (mainly M. balthica) and the

latter, by filter-feeders (M. edulis) (Figs. 5 and 6).
We estimated the possible impact of sediment mobility on the abundance and

biomass of macrozoobenthos. For this purpose the area was divided into three

groups: accumulation, stable (i.e. net sediment transport equals zero), and erosion

areas. Neither the abundance nor biomass of macrozoobenthos differed

significantly between these three areas (Kruskal Wallis ANOVA probability
0.179 and 0.288, respectively).

Fig. 3. Total abundance of macrozoobenthos (ind m™) in Nova and Keibu bays.

Fig. 4. Total dry biomass of macrozoobenthos (g m™) in Nova and Keibu bays.



112

According to ANOVA the sediment type (based on visual observation) did not

have any effect on the abundance and biomass of macrozoobenthos (p > 0.05).
In order to relate the variability in the structure of macrobenthic communities

and environmental gradients, MDS analysis was performed, based on the

dissimilarity matrix calculated from square root transformed macrozoobenthos

biomass (Fig. 7). The transformation was used to increase the importance of rare

species and decrease the contribution of abundant species in the analysis. The

results do not indicate any clear grouping of the stations. Deeper areas are

Fig. 5. Biomass distribution of detrivores (g m™) in Nova and Keibu bays

Fig. 6. Biomass distribution of filter-feeders (g m™) in Nova and Keibu bays.
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Fig. 7. Dendrogram and MDS ordination of sampling stations based on square root transformed

biomass of macrozoobenthos species. N, Nova Bay; K, Keibu Bay; the number preceding the letter

is station code; the last number is bottom code (1, silt; 2, silty clay; 3, sandy clay; 4, clay sand;

5, fine sand; 6, sand; 7, coarse sand; 8, gravel, pebbles; 9, stone); and the numbers between the

letter and bottom code show depth (m).
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somewhat separated from the shallower areas. No clear grouping of stations

according to sediment type was found.

A correlation exists between the proportion of the particles of certain size in

sediment and the abundance and biomass of macrozoobenthos. The variation of

small and large sediment particles had greater impact on macrozoobenthos than

the intermediate size classes (Table 1). The biomass and abundance of M. edulis

correlated with sediment fractions larger than 5 mm whereas the biomass of

M. balthica and N. diversicolorcorrelated with the proportion of finer sediments.

M. edulis can use particles 5 mm in diameter and bigger to attach to the bottom.

Finer sediment refers to high sedimentation, which has a positive effect on the

population of detrivores such as M. balthica and N. diversicolor. The abundance

of B. pilosa and M. balthica increased with the amount of fine sand in sediment

indicating a favourable effect of moderate sedimentation rates and current

intensity on the species.

DISCUSSION

For the major part of the Estonian coastal sea it is relatively easy to define the

environmental factors that explain most of the variation in macrozoobenthic

communities (e.g. Kotta, J. & Kotta, 1., 1995; Kotta, I. & Kotta, J. 1997; Kotta et

al., 1998). However, the key factors responsible for the development of benthic

* No significant correlations were found with the particle size classes 5-2 and 0.5-0.212 mm.

Variable
Particle size class*=< 0.063

Total biomass 0.627 0.589

Biomass of filter-feeders 0.916 0.816

Biomass of detrivores 0.505

Biomass ofM. balthica 0.517

Biomass ofM. edulis 0.918 0.818

Biomass of N. diversicolor 0.825

Total abundance -0.534 0.704

Abundance ofB. pilosa 0.718

Abundance ofM. balthica 0.505

Abundance ofM. edulis 0.703 0.612 0.644

Table 1. Significant correlation coefficient values (significance level 0.001) between the proportion
of different particle size classes in sediment (mm, % of weight) and biomass and abundance of

macrozoobenthic species and functional groups (g dry weight m™)
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fauna in Nova and Keibu bays are hard to demonstrate. The low biomass and

high proportion of mobile animals in these bays make them similar to the

communities of highly polluted areas of the Gulf of Riga (Kautsky et al., in

press). Yet Keibu and Nova bays are situated far from any bigger municipal
sewage input. Because of intensive currents and the lack of suitable substrate

these bays are practically devoid of benthic vegetation. Salinity varies little

between different sampling sites. Therefore we may neglect municipal pollution
load, benthic vegetation, and salinity as the key variables structuring benthic

faunal assemblages.

Depth and sediment type have an effect on macrozoobenthos abundance and

biomass. However, there was a considerable variation in the abundance and

biomass of macrozoobenthos within each class of depth and bottom type. The

proportion of different sediment types in each site, i.e. sediment structure, gave
better results for explaining the distribution pattern of macrozoobenthos than the

study of individual sediment types.
We believe that due to the stochastic storm events and high sediment mobility

macrozoobenthos communities are relatively unstable in the study area,

especially in its shallower parts. Therefore these communities hardly reach the

carrying capacity level of the environment. The bigger proportion of coarser size

fractions of the sediment favours the colonization of M. edulis (dominant species
of the region) by increasing its possibility to attach to the bottom.

In more stable areas where all possible substrata are covered by a diverse

community of sessile animals (Kotta et al., 1998), the biomass level is controlled

by the patchiness of the substrate, biomass of the benthic vegetation, and the

amount of food supply.
As Fig. 4 demonstrates the biomass increased with depth (i.e. decreasing

sediment mobility) in Keibu and NoOva bays. Also other factors affect the

structure of macrozoobenthic communities in these deeper areas. An important

upwelling area has been described in the vicinity of the western part of our study
area (Oyaveer & Kalejs, 1974). Upwelling favours the development of phyto-

plankton communities, which in turn support a dense filter-feeder community in

the western part of the study area. East from this area slow currents and finer

bottom substrate favour the development of a healthy community of detrivores.

However, their biomasses were rather low, most probably due to the low input of

nutrients to the system.
A multidisciplinary study has to be carried out in order to obtain more

information on the relationships between the distribution of upwelling areas,

sedimentation processes, and the structure of macrozoobenthic communities.

Coastal areas such as Keibu and Nova bays suit well for these purposes as

environmental parameters which usually dump down the impact of the above-

mentioned variables play a minor role there.
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AVATUD MERELAHTEDE PÕHJALOOMASTIKU KOOSLUSED

SOOME LAHE LÄÄNEOSAS

Jonne KOTTA, Ilmar KOTTA ja Jiiri KASK

On antud iilevaade pohjaloomastiku koosluste levikust Nova ja Keibu lahes.

S66dav rannakarp ja lamekarp olid piirkonna olulisimad liigid. S66dava ranna-

karbi biomass korreleerus positiivselt 5 mm ja suuremate osakeste proportsioo-
niga setetes, lamekarbi biomass saviosakeste hulgaga setetes. Esimese suuremad

biomassid paiknesid siivavete kerke piirkonnas, teine eelistas sedimentatsiooni-

alasid.
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