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Abstract. Absorption spectra of filtered samples and concentrations of dissolved organic carbon

were determined in the laboratory for ten lakes with diverse water quality characteristics. The lakes

were surveyed in May and August and the absorption coefficient at 380 nm ranged from 1.9 to 20 m™.

The measured absorption spectra were described by an exponential function of wavelength. The

mean slope parameter of the model ranged from -0.0159 to —0.0171 nm™, depending on the

correction method used for residual scattering. The mean specific absorption coefficient of aquatic
humus at 380 nm was 0.98 L mg™ m™'. This value is higher than most of the estimations published
in the literature. The seasonal differences of the optical properties were small.
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INTRODUCTION

The optically active fraction of the dissolved organic matter in the surface

waters, often called aquatic humus, yellow substance, or coloured dissolved organic
matter, is an important variable of the water ecosystems as it has an impact on the

water colour and on light attenuation due to exponentially increasing absorption
with decreasing wavelength. From the remote sensing point of view, coloured

dissolved organic matter (CDOM), together with suspended solids and algal
pigments, effects the upwelling radiance. In the interpretation of remote sensing
data the spectral absorption coefficient throughout the visible range and the

specific absorption coefficient of CDOM, which is used to convert the absorption
coefficient into the concentration of aquatic humus, are needed.

Several researchers have measured the absorption spectra of filtered water

samples in the ocean and coastal environment (e.g., Kirk, 1976; Nyquist, 1979;

Hojerslev, 1980; Bricaud et al., 1981; Green & Blough, 1994; Althuis et al.,
1996; Miekivi & Arst, 1996) as well as in lakes (Kirk, 1976; Davies-Colley &

Vant, 1987; Bukata et al., 1991; Decker, 1993; Gallie, 1994; Miekivi & Arst,
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1996). However, only a few studies have been made with both absorption
coefficient and CDOM concentration measurements required for the determination

of the specific absorption coefficient.

The main objective of this study was to determine the model parameters of an

exponential model for the absorption spectra in lakes with diverse water quality.
In addition, specific absorption coefficients of aquatic humus were calculated

from the absorption coefficients and CDOM concentrations.

MATERIAL AND METHODS

Two measurements campaigns were carried out in southern Finland in 1997.
Ten lakes ranging from oligotrophic to eutrophic and from clear water to humic

lakes (Table 1) were involved. Lake Lohjanjdrvi and Lake Hiidenvesi consist of

several sub-basins with trophic level varying from eutrophic to mesotrophic.

All the ten lakes were sampled in August while only six of them were

surveyed in May 1997. The number of sampling stations per lake ranged from 2

to 12 and the total number of samples was 73. All the samples were taken from

the surface layer of 0-0.4 m. Sampling in May was carried out on 7th and Bth,
only about a week after the ice-break. Algal biomass had not yet reached the

spring maximum. The weather on 7 May was windy (9 m s™), causing vertical

mixing and resuspension of bottom sediment in the shallow areas. The
concentrations of total suspended solids in May were higher than in August due
to high river discharges. In August (sampling on 11th, 12th, and 18th) the

phytoplankton biomass was at its maximum as indicated by the high chlorophyll
a concentrations (Table 1).

Kiskonjérvi 7 Eu 50-100 8 0.5

Endjérvi, Vihti 5 Eu 38 4 1.0

Lohjanjérvi 94 Eu-Me 10-55 4-8 0.8-2.9

Hiidenvesi 30 Eu-Me 7-30 8 0.7-1.2

Vesijérvi 111 Me 12 2 29

Puujirvi 7 Ol 1.5 2 7.0

Asikkalanselkä, Päijänne 77 Ol 23 4 4.0

Iso-Kisko 7 Ol 2 3 4.0

Pääjärvi 13 Humic 6 11 2.7

Keravanjärvi 1 Humic 12 20 1.6

Table 1. Main characteristics of the lakes. Chlorophyll a concentration, absorption coefficient of

aquatic humus at 380 nm, and Secchi disc transparency are mean values of the measurements

carried out in August 1997. Eu, eutrophic; Me, mesotrophic; 01, oligotrophic; Humic, humic lake
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Absorption spectra in May were measured at the Tvdrminne Biological Station

with a Shimadzu UV-PC2IOI spectrophotometer using a 5 cm quartz cuvette,

while in August the measurements were carried out in the Laboratory of Uusimaa

Regional Environment Centre with a Perkin Elmer Lambda spectrophotometer

using a 1 cm glass cuvette. The wavelength range in both measurements was

380-800 nm with an interval of 1 nm. Particulate carbon was removed from the

water samples by filtering through a Nuclepore polycarbonate (pore size 0.4 um)
filter. Filtering was made within two days after sampling and absorption spectra
were measured within a week after filtering.

The concentration of dissolved organic carbon (DOC) was analysed at the

Laboratory of the Finnish Environment Institute. Organic carbon in the filtered

water was oxidized to CO, and the concentration was determined by an infrared

spectrometry measurement (EN1484, 1997). Before the measurement the inorganic
carbon was removed by acidification and purging.

The absorption curve of CDOM was modelled by a commonly used equation

assuming an exponential increase with decreasing wavelength:

acpom(N) = acpom(ro)EXP(=S(A — Ap)),

where acpom(A) absorption coefficient of CDOM at wavelength A;

acpom(Mo) absorption coefficient of CDOM at the reference wavelength Ay;
Sslope parameter.

According to Eq. (1) the absorption of CDOM is linear if the natural logarithm of

the absorption coefficient is plotted as a function of wavelength.
Correction for scattering by small residual particles that are not retained on the

filter was taken into account by two different methods. The method presented by
Bricaud et al. (1981) is:

acpom(M) = X(A) = X(Ar) (AR/M)%,

where acpom(A) absorption coefficient of CDOM at wavelength A after

correction for scattering;
X(X) measured coefficient;

X(AR) measured coefficient at the reference wavelength Ag;

g exponent.
In the other correction method, suggested by Gallie (1994), the measured

coefficient at the reference wavelength is subtracted throughout the measured

spectra:
acpom(A) = X(A) = X(AR).

The reference wavelength is usually selected from the longer wavelength area

(e.g. 700 nm), where scattering dominates. Decker (1993) pointed out that aquatic
humus may absorb light at 700 nm and beyond. In this study Az was set to 750 nm.

The exponent g was fixed to 1 as in most of the studies where Eq. (2) has been

used (Davies-Colley & Vant, 1987; Miekivi & Arst, 1996). Thus an assumption
was made that small particles scatter more light with decreasing wavelength.

(D)

(2)

3)
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RESULTS

Coloured dissolved organic carbon

Absorption coefficients at 385 nm were first plotted against DOC concentrations

(Fig. 1). As can be seen, some DOC seems to be left in the water at very low

absorption values (<1.9 m" if a linear relationship between DOC and absorption
is assumed. This residual DOC that is not optically active (i.e. does not absorb

light) can be due to (1) contamination during the analysing process or (2) colour-

less DOC in the original sample. One contamination source can be the Nuclepore
polycarbonate filter. To find out the amount of carbon that can be leached from

the filter, purified water was filtered after every 4th sample and the DOC

concentration was determined. The DOC concentration of the purified water

was higher than the detection limit of 0.5 mg L™ only in one case. However,
when filtering the actual lake samples, the filter can be a bigger source of carbon

due to the lengthening of the filtering time because of the particles retained on the

filter.

Fig. 1. Correlation between the absorption coefficient at 385 nm (uncorrected) and the concentration

of dissolved organic carbon in May and August 1997.
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Coloured dissolved organic carbon (CDOC) was estimated from the DOC

results by:

CDOC = DOC - C,

where C, is the concentration of colourless dissolved organic carbon.

C, was obtained by calculating the intercept of the regression line on the DOC

axis separately for the two seasons (Fig. 1). Co for May was 2.7 mg L™ and for

August 4.0 mg LY.

Absorption curve

The uncorrected absorbances measured with the spectrophotometer are shown

in Fig. 2. As can be seen, a drop of some absorbances occurs at wavelengths

shorter than 385 nm. These samples were all from August and the discontinuation

of the exponential curve is probably due to the fact that a glass cuvette was used.

Therefore, wavelengths shorter than 385 nm were omitted from the absorption

data measured in August.
The slope parameter in Eq. (1) was obtained by taking first the natural

logarithm of the absorption and then making a linear fitting by the least-square

Fig. 2. Absorptionspectra of aquatic humus (uncorrected).

(4)



80

method. The absorbances after logarithmic transformation are presented in Fig. 3.

The wavelength range used for the slope estimation was 385-500 nm. Slope
parameters obtained by using uncorrected and corrected absorbances are shown

in Table 2. In the whole data set the minimum and maximum slope parameters
(Scon) were —0.0124 and —0.0196 nm”, respectively.

Specific absorption coefficient

In order to be able to compare the results with other similar studies, the

concentration of CDOM had to be estimated. CDOM was obtained through

Fig. 3. Absorption spectra of aquatic humus after logarithmic transformation. Absorption was

corrected by a constant subtraction (Eq. (3)).

Sampling| St
T |Mean| SD|Mean|SD|Mean| SD

May 26 -00162 000084 -0.0177 000194 -00140 0.00108

August 47 00157 000099 -0.0169 000192 -00139 0.00129

May & August 73 -0.0159 0.00095 -0.0171 0.00193 -0.0140 0.00121

Table 2. Slope parameter (nm™') calculated using a constant subtraction (Sc,,, Eq. (3)), correction

by Bricaud et al. (1981) (Sg,i, Eq. (2)), and without correction (Sgayw)
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multiplying CDOC by 2 (assuming that the carbon content of the organic matter

is 50%).
The specific absorption coefficient acpom(ho) in L mg™ m™ was calculated

by:
acpom(ho) = acpom(Ao/CDOM,

where acpom(Ao) absorption coefficient of CDOM at wavelength A (m™);
CDOM concentration of coloured dissolved organic matter (mg L™).

The reference wavelength used in the studies of optical properties of aquatic
humus varies considerably; the typical values are 254, 380, 400, 420, and 440

nm. The absorptions measured at short wavelengths are more accurate as an index

for the concentration of aquatic humus, because the effect of scattering in relation

to absorption is small (e.g. Kortelainen et al., 1986). However, if one is interested

in the absorption of the visible range, a reference wavelength close to 400 nm

should be used (Althuis et al., 1996).
Thereference wavelength was in this study set to 380 nm. Because of the poor

quality of the absorption measurements between 380 and 385 nm in August, the

absorption coefficient at 380 nm was calculated from the absorption coefficient at

385 nm using the slope parameter of —0.0159 and Eq. (1). The absorption
coefficient at 380 nm, corrected by a constant subtraction, varied between 1.9 and

20 m™' in the whole data set. The specific absorption coefficients are shown in

Table 3.

The minimum and maximum values of the specific absorption coefficients of

all the 73 samples were 0.47 and 2.52 L mg™ m™’, respectively. If the correction

is made by Eq. (2) after Bricaud et al. (1981), the mean acpom(380) is slightl?'
lower (0.93 L mg’l m™') than in case of constant subtraction (0.98 L mg"l g
Table 3). The seasonal differences of both the specific absorption coefficient

(Table 3) and the slope parameter (Table 2) were small.

DISCUSSION

The mean slope parameters obtained in this study (Sgr.w =—0.0140,
Scon = —0.0159 nm™', Sp; = —0.0171 nm‘l) are within the limits of the literature

Sampling time
a coom(380)

|N |Mean | SD | Min ]| — Max

May 26 0.92 0.13 0.74 1.14

August 47 1.01 0.40 0.47 2.52

May 8 August 73 0.98 0.33 0.47 2.52

Table 3. Specific absorption coefficient of CDOM (L mg™ m™) at 380 nm. Absorption was

corrected for scattering by a constant subtraction (Eq. (3))

(5)



82

values (e.g. Bricaud et al.,1981; Baker & Smith, 1982; Davies-Colley & Vant,
1987; Althuis et al., 1996; Miekivi & Arst, 1996). For water samples from the

Baltic Sea and Estonian and Finnish lakes, Maekivi & Arst (1996) estimated

Spri = —0.0173 nm™ using almost the same wavelength range (350-500 nm) as in

this study. Davies-Colley & Vant (1987) reported an Sg;; of —0.0173 nm™" for 12

lakes in New Zealand using the wavelength range of 280—460 nm. One of the

problems in the comparison of the results obtained by different reseachers is the

sensitivity of the slope parameter to the correction method and the wavelength
range used in the slope parameter calculations. The latter is due to the fact that

the observations differ more or less from the assumed exponential model. For

example, in this study Sco, was —0.0159, —0.0149, and —-0.0143 nm™', for wave-

length ranges 385-500, 385-550, and 385-600 nm, respectively.
The mean specific absorption coefficient obtained in this study (@cpom(380) =

0.98 L mg™' m™) is higher than in most of the estimations published in the

literature. In a review made by Baker & Smith (1982), including results from

five different studies of the ocean and coastal waters, a*CDOM(3BO) was in one

case 2.16 L mg™' m™, but ranged in the rest of the cases between 0.25 and

0.565 L mg™ m™. The value 0.565 L mg™ m™ calculated by Hojerslev (1980)
from the data of Nyquist (1979) for the Baltic Sea is probably the most

commonly applied conversion factor used (e.g. by Baker & Smith (1982) and

Miekivi & Arst (1996)) with no measurements of CDOM concentrations

available. The need for the simultaneous absorption and chemical measurements

of DOM in different regions, lake types, and seasons is considerable as earlier

pointed out by Davies-Colley & Vant (1987) and Gallie (1994). Although this

study included data measured in spring and late summer in ten lakes with diverse

water quality, more data are needed particularly on humic lakes with acpom(3Bo)
higher than 12 m™’ and clear water lakes with acpom(3Bo) less than 2 m”.
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SOOME JÄRVEDES LAHUSTUNUD ORGAANILISE AINE

VALGUSTNEELAVAD OMADUSED

Kari KALLIO

Valguse neeldumisspektrid ja lahustunud orgaanilise aine kontsentratsioon

marati filtreeritud veeproovidest laboratooriumis. Veeproovid olid vdetud kiim-

nest Soome jirvest, mis erinesid iiksteisest vete omaduste poolest. MoStmisi tehti

mais ja augustis 1997. Leiti, et neeldumiskoefitsient lainepikkusel 380 nm

varieerus 1,9-20 m™'. Neeldumisspektreid kirjeldati eksponentfunktsiooni abil.

Saadud spektrimudeli keskmine kaldeparameeter oli vahemikus —0,0159 kuni

—0,0171 nm™', s6ltuvalt jaikhajumise arvestamise korrektsioonitegurist. Lahustu-

nud orgaanilise aine keskmine erineeldumiskoefitsient lainepikkusel 380 nm oli

0,98 L mg"' m™', mis iiletab enamiku teiste autorite poolt saadud védrtused.

Jirvede vee optiliste omaduste sesoonsed muutused olid viikesed.
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