
Proc. Estonian Acad. Sci. Biol. Ecol., 1999, 48, 1, 63-74

63

OPTICAL MEASUREMENTS IN LAKE ULEMISTE

Ants ERM Helgi ARST Medhat HUSSAINOV Tiit KUTSER

and Anu REINART

Estonian Marine Institute, Paldiski mnt. 1, 10137 Tallinn, Estonia; ants@phys.sea.ee

Received 1 June 1998

Abstract. Some optical measurements were performed in Lake Ulemiste in summer 1997. Lake

Ulemiste is the main drinking water reservoir of Tallinn, the capital of Estonia. Consequently, all

investigations of its water quality and underwater light climate are of special importance. Five

measurement series in each of four sampling stations were carried out fromMay to August. Vertical

profiles of downwelling irradiance in the PAR region of spectra were determined, the relative

transparency of the water was estimated by Secchi disk. Concentrations of chlorophyll a and

suspended matter were determined in the laboratory from water samples. Spectrophotometrical
processing of the filtered and unfiltered water was carried out to describe the beam attenuation

coefficient spectra and the optical influence of yellow substance in the water. Passive optical remote

sensing measurements were made from board a boat. Results obtained show that the water of Lake

Ulemiste is optically turbid, comparable with such lakes as Vortsjérv in Estonia and Lohjanjirvi in

Finland. The chlorophyll content varied from 21 to 50 mg m™>, that of the suspended matter from 5

to 22 mg L™, the effective concentration of yellow substance from 10 to 20 mg L™'. About 25% of

the subsurface irradiance (in the PAR range) reaches the depth of 0.5 m and only 5% penetrates to

1.5 m. Lake Ulemiste is often optically stratified, thicker layers occurring near the bottom.
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INTRODUCTION

The optical properties of natural water environments, the amount of solar

energy and its spectral composition in and above the water bodies are of interest

not only to physical and biological oceanographers, but also to those interested in

water pollution estimations and responsible for lake management. Underwater

organisms need for life besides nutrients and oxygen also solar light. Deviations

from the normal balance in any of these can have negative influence on the living
conditions in the water. Eutrophication or water pollution may significantly

change the amount and spectral composition of solar radiation penetrating deeper
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layers of the water body. Investigations of the optical characteristics and under-

water irradiance within a water body are rather efficient tools for estimating its

ecological state and water quality. Such estimations are especially important for

water bodies functioning as reservoirs of drinking water.

Measurements of some optical parameters of Lake Ulemiste were carried out

in summer 1997. Lake Ulemiste is the main drinking water reservoir of Tallinn.

The area of the lake is 9.6 km” and its volume is 0.024 km®. The average depth is

2.5 m and the maximum depth is nearly 6 m. Lake Ulemiste lies on the North-

Estonian Plateau, 35.7 m above sea level. It separated from the sea about 8000

years ago. Today Lake Ulemiste is marshy, having an almost 8 m thick layer of

sediments on the bottom. The main influx goes through the Pirita Channel, the

only outflux through the Water TreatmentPlant. The water level varies up to =1 m.

Ulemiste is a typical eutrophic lake. The reaction of water is alkaline all over the

year (pH = 7.6-8.6). The water contains large amounts of calcium (70 mg L,
bicarbonates (- 200 mg L"), and sulphates (~45 mg L"]).

Lake Ulemiste borders on the city of Tallinn and (from the other side) on an

airport. A highway is proceeding near the lake. It means considerable human

impact on Ulemiste. In addition, there is a possibility that the lake is contaminated

through the Kurna watercourse, which passes a populated region.
In summer 1997 the measurements were carried out in four stations: near the

mouth of the Pirita Channel (station Pirita), near the pumping station of the

Water Treatment Plant (station Plant), in the centre of the lake (station Centre),
and near the mouth of the Kurna watercourse (station Kurna). A chart of Lake

Ulemiste with the location of these four stations is presented in Fig. 1.

Fig. 1. Lake Ulemiste near the capital of Estonia, Tallinn, with sampling stations
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MEASUREMENTS AND METHODS

Three groups of measurements were made:

1. In situ underwater measurements: (a) relative transparency of the water,

zsp (Secchi disk depth); (b) vector and scalar irradiances in the PAR region

(400-700 nm) of the solar spectrum at different depths in the lake (E4(PAR) and

Eo(PAR)).
2. Processing of the water samples in the laboratory: (a) determination of the

light attenuation coefficient spectra of filtered and unfiltered water (c¢*(A) and

c¢*(A)); (b) measurement of the concentrations of chlorophyll a and suspended
matter (Cqy and Cs) in the water.

3. Passive optical remote sensing of the lake on board a boat: spectra of the

water-leaving radiance, L,(A), and incident solar irradiance, E4(O,A).
The measurements were carried out with underwater quantum sensors

LI-192 SA (for E4PAR)) and LI-193 SA (for Eo(PAR)). From the measured

underwater irradiances the values of diffuse attenuation coefficients, Kj(PAR)
and Ko(PAR), were determined for separate layers (with a thickness of 0.5 m) and

averaged over the depth value. The beam attenuation coefficient measurements

were carried out using a commercial spectrophotometer Hitachi UlOOO. The

results of the measurements give us the difference between the beam attenuation

coefficient of water under investigation and that of distilled water. By spectro-
photometrical processing of the water samples the value c*(2) is obtained:

c*O) = c(X) — AD(X) — c4(2),

where c¢()) is the real beam attenuation coefficient, Ab(A) is the contribution of

small-angle forward scattering to the measured radiation, and c4(A) is the

attenuation coefficient of distilled water (all in m™). The ratio Ab(X)/c*()),
which characterizes the underestimation of c(A), depends on the scattering
properties of the aquatic medium (concentration, type, and size of scattering

particles in the water). To elaborate a method for estimating the correction Ab(A)
for Hitachi UlOOO special, complicated investigations are needed. However, an

analysis of our earlier data (Arst et al., 1995, 1996, 1998) shows that c*(2X)

spectra and their values averaged over the PAR region, ¢*(4oo-700), are rather

good indicators of water transparency and quality.
Hitachi UlOOO was also used to measure the spectra of filtered water and the

values of ¢f*(A) were obtained:

cr*(A) = cdX) — c4).

As the scattering coefficient b(A) for ¢¢*(A) is practically zero, also Ab(A) = 0

and the values of ¢f*(A) are approximately equal to the absorption coefficient of

yellow substance, a,(A) (there is actually a small discrepancy, caused by the

(1)

(2)
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influence of colloids penetrating the filter (Méekivi & Arst, 1996)). However, we

assumed that in the ultraviolet part of the spectrum:

ay(3so nm) = ¢#*(3so nm).

The amount of yellow substance in the water was described by means of its

effective value, Cy., which is calculated using the data on a, at the wavelength
350 nm (Arst et al., 1996):

Cye = 1.06 a,(350 nm),

where Cy. will be in mg L 7
Note that neither a,(A) nor Cy. can express the real amount (by weight) of

yellow substance in the water, but both are able to characterize this amount

through its optical influence. However, since it is extremely difficult to deter-

mine individual organic compounds of yellow substance, the optical deter-

mination has distinct advantages over chemical analytic techniques (Dera, 1992).
The concentration of suspended matter was determined by its dry weight after

filtration of the water through cellulose acetate filters (firm Sartorius, pore
diameter 0.45 um). The same filters were used also to determine the values of

ce*(A). For chlorophyll a a standard method based on measuring the absorption of

dissolved in ethanol phytoplankton at 665 nm was used.

For remote sensing measurements a spectrophotometer ST 1000, designed by
Ocean Optics Inc. (USA), was used. From the measured spectra of L,(A) and

E4(A) the values of remote sensing reflectance, r(A), were calculated:

L,)
Üaa

Our measurements were only episodic as we had no possibilities to carry out

continuous or regular measurements. The measurements were performed on

21 May, 6 June, 25 June, 15 July, and 27 August 1997. Note that remote sensing
measurements were carried out only on 27 August.

RESULTS AND DISCUSSION

The variability limits of bio-optical parameters for Lake Ulemiste are shown

in Table 1. Here three stations are quite similar to one other, while the station

Pirita 1s distinguished by a higher transparency of water and also by a bigger
amount of yellow substance. However, the light attenuation coefficient in deeper
layers (1.5-2 m) had often bigger values for Pirita than for the other stations. For

this reason the averaged by depth light attenuation coefficient for Pirita is similar

to those of the other stations.

(3)

(4)

(5)
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Two spectra of c*(X) obtained for Lake Ulemiste are compared with those for

other lakes in Fig. 2. We can see that the waters of Ulemiste are similar to the

turbid lakes Vortsjarv and Tuusulanjarvi (Secchi disk depth 0.75 and 0.5 m,

chlorophyll a concentration 40 and 68 mgm™, respectively). The spectra of

comparatively clear lakes (Nohipalu Valgjirv, Paukjdrv, Zsp = 4.5-5 m) are far

away, the spectrum of Lammi P#idjdrvi shows high values of ¢*(A) only in the

blue region, which is due to the high amount of yellow substance in this lake.

Variability limits
Parameter äPlant

SD, m 1-1.75 0.7-0.9 0.7-1.0 0.75-1.2

Cen, mg m™ 13-44 31-49 31-50 . 29—50

Cye MELT 12-20 10-13 11-14 11-13

C, mgL”' 8-21 16-26 20-25 10-27

c*(400-700), m™" 4-12 6-14 7-14 6-12

K4PAR)*, m™ 1.1-1.7 1.1-2.2 1.1—2.1 1.6-2.0

* Measured for the layer 0.5-1.0 m.

Table 1. Variation of bio-optical parameters of Lake Ulemiste from 21 May to 27 August 1997
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Fig. 2. Comparison of the spectra of ¢*(A) (samples from the surface layer), obtained for different

types of lakes: 1, Tuusulanjarvi (14.08.97); 2, Vortsjiarv (16.06.97); 3 and 4, Ulemiste (Centre,
25.06.97 and 10.06.97); 5, Lammi P#djéarvi (station 5, 13.08.97); 6, Nohipalu Valgjiarv (10.08.97);
7, Paukjirv (15.06.97).
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The same conclusion can be drawn from Fig. 3, demonstrating that the bio-

optical parameters of Lake Ulemiste exceed those of many lakes. The results of

optical remote sensing are compared in Fig. 4. As known, the spectra of remote

sensingreflectance for turbid, eutrophied waters are characterized by high values

of maximum (between 400-700 nm) and the location of this maximum between

550-650 nm. Indeed, the reflectance spectra for Ulemiste are very different from

the spectrum obtained for the open Baltic waters.

Figure 5 presents an example of the spectra of ¢* for unfiltered and filtered

(cs*) water for two stations of Lake Ulemiste. Unfiltered water taken from the

surface layer of the station Plant is less transparent than in the station Pirita, but

filtered water gives the reverse picture, indicating that the yellow substance

concentration in station Pirita exceeds that in station Plant.

Some examples of the vertical distribution of the downwelling solar irradiance

for the PAR region of the spectrum in Lake Ulemiste are shown in Fig. 6

(27 Aug. 1997, four stations). Table 2 gives information on how much irradiance

from incident irradiance reaches different levels.

Fig. 3. Bio-optical parameters of Lake Ulemiste compared with those for some other Estonian and

Finnish lakes.
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Fig. 4. Comparison of the optical remote sensing data for Lake Ulemiste with those obtained for

other water bodies: above, normalized to 550 nm spectra ofremote sensing reflectance r(A); below,

spectra ofremote sensing reflectance.

Staüon
Valucs OfEd(O)IEd(Z), %

i

Table 2. Attenuation of the solar radiation in the waters of Lake Ulemiste on 27 August 1997

-4+ aAS UtSA sd Pa —

Kurna 34.8 22.8 7.6 4.0

Centre 44.2 25.0 7.8 4.6

Pirita 42.9 27.8 10.9 5.9

Plant 31.0 22.1 7.8 4.3
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Fig. 5. Spectrometric attenuation coefficient for filtered and unfiltered water (c* and c¢¢*), measured

from water samples taken on 15 July 1997 in two stations of Lake Ulemiste.

Fig. 6. Vertical profiles of downwelling solar irradiance in the range 400-700 nm for four stations

ofLake Ulemiste on 27 August 1997.
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The averaged by depth Ky(PAR) was calculated using the least square fit

through the irradiance versus depth points, In[E4(z)] vs. z. The mean slope
obtained by this regression is Ky. If K; is calculated in such a way its depth
dependence is lost. However, this dependence can be described by measuring
K 4 of separate layers for the whole water column. We carried out these

measurements for layers with a thickness of 0.5 m. Some examples of results are

presented in Figs. 7 and 8. As known, in a vertically homogeneous water body
the value of K4(PAR) decreases with increasing depth (the reason is the change
in the spectral composition of the PAR region light with depth). So, a lack of

vertical change or an increase in Ky(PAR) with depth indicates optically thicker

layers at these depths.
However, the shape of the vertical profiles of K; may be influenced by

measurement errors. These include “instrumental” errors, by our estimation not

exceeding 5%, and also errors caused by measurement conditions. Undulation

brings about fluctuations of the underwater irradiance and despite of averaging

Fig. 7. Vertical profiles of the irradiance attenuation coefficient, Ky(PAR), for the station Pirita

measured at different times.
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numerous measurements some uncertainty may be left in the final results. In

addition, under conditions of variable cloudiness (Cu clouds) it may happen that

K, for one layer is measured when the sun is shining, but for the next layer when
the sun is already covered by clouds. As known, the value of K, depends on the

angular distribution of downwelling irradiance, which is different in clear and

cloudy sky. By our estimations the total measurement error of K is about 3—10%,
depending on measurement conditions. This error can explain some “waves” in
the vertical profiles of K 4 (especially near the surface), but the growth ofK or its

stability in deeper layers are probably caused by a change in the optical thickness
of the water. It is confirmed also by ¢*(4oo-700) values and concentrations of

optically active substances in the water: for station Pirita only on 27 August 1997
their values at a depth of 2 m were smaller than at 0.5 m. In other cases their
values for 2 m exceeded those for 0.5 m. The same explanation is valid also
for irregularities of Ky at a depth of 2—3.5 m in the stations Plant and Centre on

21 May 1997 (Fig. 8).

Fig. 8. Vertical profiles of the irradiance attenuation coefficient, K,(PAR), for four stations in Lake

Ulemiste on 21 May 1997.
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Our observations were episodic and the observation period was short. The

drinking water reservoir, Lake Ulemiste, needs undoubtedly additional

investigations in the future for finding out the temporal variability of its bio-

optical parameters and estimating the trend of its ecological state.

CONCLUSIONS

1. The water of the drinking reservoir of Tallinn, Lake Ulemiste, is optically
turbid, comparable with such lakes as Vortsjdrv in Estonia and Lohjanjirvi in

Finland.

2. The chlorophyll content in Lake Ulemiste is high: the concentration of

chlorophyll a changed in summer 1997 from 21 to 50 mg m™. The effective

concentration of yellow substance was in the limits 10-20 mgL™, the

concentration of suspended matter was 522 mg L™
3. About 25% of the subsurface irradiance (in the PAR range) penetrates to a

depth of 0.5 m while only 5% reaches 1.5 m.

4. Lake Ulemiste is not deep, mostly only to 2-2.5 m. Nevertheless it is often

optically stratified, thicker layers located near the bottom.

5. Our observations were episodic and carried out during a short period;
therefore we cannot show the temporal variability of bio-optical parameters in

Lake Ulemiste and describe the periods of higher biological activity of the water.

To find out connections between underwater light climate and biological processes
in Ulemiste further continuous investigations are necessary.
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OPTILISED MÕÕTMISED ÜLEMISTE JÄRVEL

Ants ERM Helgi ARST Medhat HUSSAINOV Tiit KUTSER

ja Anu REINART

Suvel 1997 tehti optilisi mo6tmisi Ulemiste jirvel. See jirv on Tallinna, Eesti

pealinna pohiline joogiveereservuaar, seega on koik uuringud, mis aitavad

hinnata ja prognoosida tema vee kvaliteeti ja veealust valguskliimat, erilise

tahtsusega. Mootmised toimusid maist augustini jidrve neljas punktis, igaiihes viis

mooteseeriat. Médrati allasuunduva kiiritustiheduse vertikaalsed profiilid PAR-

spektripiirkonna jaoks, vee relatiivset ldbipaistvust hinnati Secchi ketta abil.

Veeproovidest médrati klorofiill a jaheljumi kontsentratsioonid vees. Filtreeritud

ja filtreerimata vee spektrofotomeetrilise to6tluse tulemuste pohjal kirjeldati
suunatud kiirguse norgenemiskoefitsiendi spektreid ja hinnati kollase aine optilist
moju vees. Passiivne optiline kaugsondeerimine toimus mootmiste teel paadist.
Saadud tulemused niitavad, et Ulemiste jirve veed on optiliselt higused, vor-

reldavad Vortsjdrve (Eesti) ja Lohjanjdrvi (Soome) vetega. Klorofiilli hulk

varieerus 21-50 mg m™, heljumi oma 5-22 mgL™ ja kollase aine efektiivne

kontsentratsioon oli 10-20 mg L™". Siigavusele 0,5 m jouab ligi 25%, siigavusele
1,5 m ainult 5% veepinda libinud PAR-piirkonna piikesekiirgusest. Ulemiste

jarv on tihti optiliselt kihistunud, kusjuures tihedamad kihid asuvad enamasti

jirvepohja kohal. Tehtud uurimusi tuleb pidada esialgseiks, t66 jitkamine Ule-
mistel on kindlasti vajalik.
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