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Abstract. The production of anthocyanin in lower epidermis of the cotyledons in response
to illumination varied widely between individual dark-grown seedlings of a buckwheat
(Fagopyrum esculentum Moench) population. No significant anthocyanin colouration
developed in 20—309% of the cotyledons. Nevertheless, the seedlings did not differ in the
content of glycosylflavones and rutin. A combined treatment with kinetin and light
induced anthocyanin accumulation in all cotyledons of the population. Anthocyanin
accumulated also in the upper epidermis in an amount comparable with the lower epi-
dermis. The conclusion has been drawn that kinetin causes the appearance of competence
for anthocyanin synthesis in response to illumination in cotyledons and tissues lacking
it for some genetical and/or developmental reasons.
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INTRODUCTION

The synthesis and accumulation of anthocyanin pigments in plants are
regulated by both environmental and developmental signals (Mohr, 1972;
Murray et al., 1994). Light is the most important factor in the control of
anthocyanin synthesis, and evidence of the involvement of at least three
photomorphogenic photoreceptors has been obtained (Mancinelli, 1985;
Oelmiiller & Mohr, 1985). Phytohormones, such as gibberellic acid (Weiss
et al., 1990; Ozeki & Komamine, 1986), and kinetin and other cytokinins
(Klein & Hagen, 1961; Pecket & Bassim, 1974; Nakamura et al., 1980;
Margna & Vainjarv, 1983) can also substantially promote the accumulation
of anthocyanins in various plant organs. Among kinetin effects on the
phenolic metabolism, perhaps the most striking one is a 9-fold increase in
anthocyanin accumulation observed in excised cotyledons of dark-grown
buckwheat seedlings (Margna & Vainjérv, 1983).

In previous studies of light- and kinetin-dependent anthocyanin
accumulation, 20 to 50 seedlings, constituting a sample, were analysed
together. However, visual observations of the buckwheat seedling popula-
tion used in our studies have shown that they display a remarkable hetero-
geneity in anthocyanin accumulation under different treatments. Therefore
it cannot be excluded that average data obtained with heterogenous
material disguise some essential features of the studied effects. In this
work, we have checked whether the individual seedlings differ in their
response to illumination and kinetin.
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MATERIAL AND METHODS

Buckwheat (Fagopyrum esculentum Moench cv. Victoria) seeds were
germinated in the dark on moistened [ilter paper at 25°C. From 96-h-old
dark-grown seedlings cotyledons were excised and incubated in water or
0.3 mM kinetin solution in the dark or in a phytotron (light of white
fluorescent tubes, 30 Wm~2) at 25°C. With seedlings incubated in dark-
ness, the excision was performed in dim green safelight. After incubation
(20 or 44 h) the cotyledons of each individual seedling were separately
fixed in 3.5 ml of 1% HCI in 509% ethanol on a boiling water bath for
1.5 min and thereafter extracted overnight at 10°C in the same mixture.
After centrifugation the absorbancy of the extracts at 546 nm was deter-
mined and taken as an estimate of anthocyanin content in a pair of
cotyledons. The irequency distribution curves of anthocyanin content
include the data of 200—450 seedlings.

The anthocyanin content in the upper and lower epidermis was com-
pared as follows. Cotyledons were floated for 1—2 min in 5% HCI in 50%
ethanol, covered with glass dust, laid between sheets of filter paper, and
pressed to obtain imprints. The imprints of the upper and lower side of
cotyledons and the tissue residue were extracted with 1% HCI in 50%
ethanol, and the absorbancy of the centrifuged extracts at 546 nm was
determined.

Flavonoids were determined spectrophotometrically after their paper
chromatographic separation (Margna & Margna, 1969; Margna & Vain-
jérv, 1983). Statistical analysis was performed using Statgraphics 4.2.

RESULTS

Visual observations revealed that individual buckwheat seedlings
differ significantly in their ability to produce anthocyanin in response to
illumination. While hypocotyls and petioles became always pigmented
when illuminated, almost a third of the seedlings showed no visible red
pigmentation in leaf blades of their cotyledons. Among the red-pigmented
cotyledons there were those whose lower epidermis was rather weakly and
unevenly red. The observed variation in the pigmentation of cotyledons
is documented using the relative frequency distribution curve (polygon) of
the anthocyanin content of cotyledons. Each point of the curves represents
the relative frequency (percentage) of cotyledons whose anthocyanin
content falls into a given category (length 0.03 or 0.04 OD units).

It must be noted here that the measured absorbancy of cotyledon
extracts includes light scattering and the contribution of anthocyanin
originated not only from laminae but also from petioles which became
pigmented in all seedlings during the illumination. The average
absorbancy of anthocyanins from petioles equalled 0.012 OD units per
seedling. The share of light scattering at 546 nm estimated by the base
line of the absorbancy spectrum of extracts and by absorbancy measure-
ments of HyOs-bleached extracts was found to be 0.03 on average. This
means that the cotyledons with the absorbancy value of the extract below
0.04 may be considered unpigmented. This conclusion is in agreement
with visual observations.

The relative frequency distribution of the anthocyanin content in
cotyledons demonstrates the extent of differences in the ability of indi-
vidual seedlings to produce anthocyanin in response to a certain light
and/or kinetin treatment. After a 20-h light incubation of cotyledons in
water or after dark incubation with kinetin the distribution polygon of the
corresponding data points is markedly asymmetrical (Fig. 1), its maximum

110



45 -

40 _
§ - &~ Light, water
—e— Dark, kinetin

35 4 —a— Light, kinetin

Relative frequency, %

10 4

[\ S SFEPEFEFEPEFEPEE. _
0.02 0.06 0.1 0.14 0.18 0.22 0.26 0.3 0.34 0.38 0.42 0.46 0.5 0.54
Anthocyanin content, OD

Fig. 1. The frequency distribution of the anthocyanin content in buckwheat cotyledons
after a 20-h incubation. Each point on the curves represents the percentage of cotyledons
whose anthocyanin content falls into a given category (length 0.04 OD units).

being located at the beginning of the distribution range: 20—309% cotyle-
dons fall into the category of unpigmented ones (OD<0.04). Prolongation
of illumination of cotyledons from 20 to 44 h did not alter the general
character of the distribution curve (Fig. 2). This means that the anthocya-
nin accumulation in cotyledons was completed within the first 20h of
illumination in water. However, when incubated with kinetin in the dark,
the anthocyanin accumulation in cotyledons proceeded longer than 20 h.
As a result, the obtained frequency distribution polygon is shifted towards

higher OD values and the mean anthocyanin content rises markedly
(Table 1).

The relative frequency polygon of the anthocyanin content of cotyledons
after a 20-h incubation with kinetin solution in the light (Fig. 1) differs
substantially from that obtained under the impact of light or kinetin alone,
being much more uniform and stretching over a broad interval of OD
values over 0.5 OD units. It is remarkable that no unpigmented cotyledons
(OD<0.04) were discovered. The prolongation of the treatment from
20 to 44 h (Fig. 2) changed markedly the shape of the frequency polygon
and shifted it towards greater OD values. It is important to stress that
after 44-h treatment the frequency polygon obtained three peaks.

To find out whether there is a correlation between the light- and
kinetin-induced anthocyanin accumulation in an individual cotyledon, the
treatment of cotyledons (with light and kinetin) was carried out according
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Fig. 2. The frequency distribution of the anthocyanin content in buckwheat cotyledons
after a 44-h incubation. Category length 0.04 OD units.

Table 1

Comparison of the effect of kinetin and light on anthocyanin production in buckwheat
cotyledons (OD units) by the statistical parameters of the population

Treatment Mean Stafld?rd

deviation
20 h light 0.079 0.049
44 h light 0.073 0.051
20 h kinetin & light 0.216 0.110
44 h kinetin & light 0.311 0.149
20 h kinetin & dark 0.072 0.047
44 h kinetin & dark 0.118 0.072

to the following scheme. The cotyledons kept 20 h in the light in water
were divided, after the visual estimation of anthocyanin colouration, into
three groups (group 1 — unpigmented, group 2 — unevenly pigmented,
group 3 — fully pigmented), transferred onto kinetin solution, and
illuminated further for 24 h. The frequency distribution of anthocyanin
in the cotyledons of these three groups after 20 h of illumination and
after the subsequent combined light and kinetin treatment are given
respectively in Fig. 3 and Fig. 4. This graphical presentation and also
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Fig. 3. The frequency distribution of the anthocyanin content in groups of buckwheat

cotyledons formed according to visual estimation of pigmentation after a 20-h incubation

in water in the light. Group 1, unpigmented; group 2, unevenly pigmented; group 3, fully
pigmented cotyledons. Category length 0.03 OD units.

Table 2
The average kinetin and light effect on anthocyanin production (OD units) in cotyledons
belonging to groups with different responsiveness

Treatment

Group 1 I Group 2 | Group 3

Grouping after a 20-h illumination without kinetin

20 h light 0.053 0.114 0.214

20 h light + 24 h light & kinetin 0.076 0.223 0.419
Grouping after a 20-h kinetin treatment in the dark

20 h kinetin & darkness 0.022 0.071 0.117

20 h kinetin & darkness + 24 h kinetin & light 0.135 0.342 0.523

statistical parameters given in Table 2 show that the responses of a given
group to illumination and kinetin are correlated. An experiment with the
reversed order of treatment, with kinetin and light, when the cotyledons
were grouped on the basis of the colouration after a 20-h dark incubation
with kinetin and thereafter illuminated, gave similar results (Table 2).
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Fig. 4. The frequency distribution of the anthocyanin content in groups of buckwheat
cotyledons formed after a 20-h illumination (grouping as in Fig. 3) and incubated there-
after 24 h on kinetin solution in the light. Category length 0.03 OD units.

Table 3
Content of anthocyanin in the tissue prints of cotyledons
(percentage of the total content of a cotyledon)
Treatment Upper side Lower side Residue
44 h light & water 5 39 56
44 h light & kinetin 19 22 59
44 h dark & kinetin* 9 31 60

* Excised in dim green safelight.

Illumination induces anthocyanin accumulation in the lower epidermis.
Kinetin caused the accumulation of anthocyanin also in the upper epider-
mis. For demonstration and documentation of this phenomenon, the
cotyledons most intensively coloured after 44 h of illumination with and
without kinetin were analysed by the tissue printing method described
above. This method is not strictly quantitative because of a considerable
amount of anthocyanin remaining in the tissue residue, and the cell sap
from upper and lower epidermises getting mixed in the marginal region.
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Table 4

Content of flavonoids in cotyledons belonging to groups with different anthocyanin
colouration (nmol per pair of cotyledons)

Flavonoid Group 1 Group 2 Group 3
Anthocyanin - W 9.6* 22.5¢%
Rutin 102 117 109
Glycosylflavones 232 229 238

Values for flavonoids are the means of ten replicates. Means in rows followed by an
asterisk are significantly different at P<<0.01 according to Student’s test.

Nevertheless, the results obtained (Table 3) show that under the influence
of kinetin the anthocyanin content in the upper epidermis may reach the
level equal to that in the lower epidermis.

The content of rutin and four C-glycosylilavones (orientin, iso-orientin,
vitexin, and isovitexin) was determined in the cotyledons grouped
according to the visual estimation of anthocyanin pigmentation after a
20-h illumination as shown in Fig. 3. No significant differences in the
content of rutin and C-glycosylilavones between these groups were
observed (Table 4).

DISCUSSION

Light as a photomorphogenic signal plays a central role in the control
of developmental events including metabolic differentiation of cells and
tissues. The metabolic differentiation of cells includes spatial and tem-
poral regulation of the genes that encode enzymes of the biosynthetic
pathway of anthocyanin biosynthesis and the sensitivity of these processes
to light and various other external and internal factors (Murray et al,
1994; Taylor & Briggs, 1990). By the time the dark-grown buckwheat
seedlings in our experiments were exposed to light they had, according to
the endogenous differentiation programme of morphogenesis, acquired the
ability to synthesize anthocyanin in response to illumination in the
epidermal cells of the hypocotyls and the lower side of the cotyledons but
not in the upper epidermis.

The results presented in this article indicate that in addition to the
above-mentioned differentiation pattern of tissues there exists also a
remarkable diversity between individual cotyledons of dark-grown seed-
lings in terms of their competence to produce anthocyanin in response to
light. The frequency distribution of anthocyanin content of cotyledons
illuminated without kinetin for 20 or 44 h (Figs. 1 and 2) demonstrates the
extent of this metabolic difference in the buckwheat population. A remark-
able proportion (20—30% cotyledons) is not competent to accumulate
anthocyanins in response to light. Though these light-insensitive cotyle-
dons acquire the ability to produce anthocyanin when kinetin is applied
together with light, the extent of variation in anthocyanin accumulation
does not decrease, but, on the contrary, increases greatly. It seems to be
informative that the frequency distribution curves of the anthocyanin
content in cotyledons never displayed a normal distribution. Moreover,
after 44 h of combined treatment with light and kinetin the frequency
distribution curve had three separate peaks. These facts give evidence
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that the variation of the anthocyanin content is not of a completely
stochastic nature, but seems to be related to the genetic heterogeneity of
the population. The included subpopulations were distinguished by the
anthocyanin accumulation rate during the combined treatment of cotyle-
dons. These subpopulations may differ in the regulatory genes controlling
the expression of anthocyanin synthesis. For instance in maize, an exten-
sively studied species in respect to the genetic regulation of anthocyanin
synthesis, two families of activator genes have been found to control the
expression of all the structural genes that are required for anthocyanin
biosynthesis in the different parts of the plant. Each family comprises
multiple homologous genes that control pigmentation in a specific tissue
or organ (Dooner et al., 1991). The light induction of anthocyanin
synthesis and its dependence on the fluency rate were iound to be deter-
mined by allelic combination of these regulatory locuses (Taylor &
Briggs, 1990). Besides, the genes controlling the anthocyanin synthesis
show a broad range of variation with respect to the developmental and
tissue-specific expression (Murray et al., 1994).

The presented results demonstrate that cotyledons with greatly differ-
ent ability to produce anthocyanin in response to illumination are indis-
tinguishable in respect to the accumulation of C-glycosylflavones and
rutin. This fact indicates that the observed difference in anthocyanin
accumulation is referrable to the control of some later steps of the
synthetic pathway.

The difference in the effects of ltght and combined ]ight and kinetin
treatment on the anthocyanin synthesis in the upper epidermis suggests
participation of different action mechanisms. The same conclusion may
be drawn from the data in Table 2 showing that the effect of the combined
light and kinetin treatment following a pretreatment with kinetin alone
is markedly greater than after a pretreatment with light. However, the
obtained results do not allow of the specification of the site(s) of action
and mechanism(s) through which kinetin affects the light control of
anthocyanin synthesis. Margna and Vainjarv (1983) found that kinetin
promotes also the formation of C-glycosylilavones and rutin in buckwheat
cotyledons in the dark and, to a lesser extent, in the light. This suggests
that the expression of some earlier steps of the synthetic pathway is
affected by kinetin.

The statistical approach applied in the present work enabled us to
demonstrate, therefore, heterogeneity of the buckwheat population studied.
It includes several (three) subpopulations differing in the level
of the light-induced anthocyanin accumulation. This difference in light
sensitivity is obviously associated with the control of final steps in
anthocyanin biosynthesis. Kinetin enhances anthocyanin accumulation and
increases the efiectiveness of light action resulting in the enhancement
of differences in the synthetic capacity of these subpopulations.
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TATRAIDANDITE POPULATSIOONI HETEROGEENSUS
VALGUSE JA KINETIINI POOLT INDUTSEERITAVA
ANTOTSUANIINIDE AKUMULATSIOONI SUHTES

Ants TOHVER, Lembe LAANEST, Tiiu VAINJARV

Etioleerunud tatraidandite idulehtedes valguse mojul akumuleerunud
antotsiianiini hulk varieerus populatsiooni piires suures ulatuses. 20—30
protsendil idulehtedest jdid lehelabad praktiliselt antotsiiaanpigmendita.
Erinevalt varvunud idulehtede gliikosiiiililavoonide sisalduses olulist eri-
nevust ei tdheldatud. Valguse ja kinetiini koostoimel ilmus antotsiiaan-
pigmentatsioon koigis idulehtedes {ile populatsiooni. Nende kahe teguri
koosmoju pohjustas antotsiianiini akumulatsiooni induktsiooni ka iilemi-
ses epidermises alumise epidermisega ldhedasel maédral. Jéreldatakse, et
kinetiini toimel laieneb kompetentsus antotsiianiini siinteesiks valguse
mojul ka iilemise epidermise rakkudele ja neile idulehtedele, milles genee-
tilistel pohjustel antotsiianiini valgustamisel ei teki.
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FTETEPOTEHHOCTb nonyJsilluu NMPOPOCTKOB IPEYUXH
OTHOCHUTEJIbHO HAKOMJIEHHUS AHTOUUAHUHA
noa NEWCTBUEM CBETA U KUHETHHA

Autrc TOXBEP, Jlem6e JIAAHECT, Tuity BAMHSPB

KonnyecTBO aHTOLUMAaHHHA, HAKONJIEHHOTO B OTBET Ha JelCTBHE CBeTa
B CeMA0/fX (B HHXKHEM 3MHAEpPMHCE) OTAEJNbHBIX MPOPOCTKOB TI'PEYHXH,
CHJIBHO BapbHpOBaJioch B npepenax nonyasuuu. ¥ 20—30% ceMsanoabHBIX
JIHCTbeB 00pa3oBaHHs aHTOLMAHOBOTO NHIMEHTA MNpPaKTHUECKH He HabJiio-
JaJnoch. B ceMsifonsx ¢ pa3jiHYHOH aHTOLHAHOBOH NHrMeHTalHedl He oOHa-
PY>KHJH CyLIeCTBEHHOH pAa3HHUIBl B COJAEPKAHHH TJIHKO3HJA(JIABOHOB H
pytHHa. Ilpu coBMecTHOM MeHCTBHH CBeTa M KHHETHHA HAKOIJIEHHe aHTO-
IHaHHHA NPOH30LIIO BO BceXx 0e3 HCKJIIOYEHHS CeMSJ0JbHBIX JHCThIX
MONyJISIUHH, NPHUEM HAKONJeHHe AaHTOUHaHHWHA HabJI0JaJloch TaKXe B
BE€pPXHEM 3MHAepMHce NPHOJIH3HTENbHO B PAaBHOM KOJHYECTBE C TaKOBBIM
B HHKHeM 3nujepmuce. [lenaercsi BbIBOJA, UTO KHHETHH BBI3BIBAET KOMIIe-
TeHIHI0O K 06pa30BaHHI0 aHTOLHAHHHA HA CBETY W B BepPXHEM SIHAEPMHCE,
a TakxXe B TeX CeMSL0JbHBIX JHCTbAX, KOTOPble MO NeHeTHYeCKUM MpUUYHHAM
JIMIIEHBl 3TOH CHOCOOHOCTH.
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