Изв. АН Эстонии. Биол., 1991, 40, № 3, 165-175

https://doi.org/10.3176/biol.1991.3.06

УДК 556.555.8: 556.114.679(282.247.224.2.3)

Арно ПИХЛАК*

ЗАГРЯЗНЕНИЕ ПСКОВСКО-ЧУДСКОГО ОЗЕРА РАДИОНУКЛИ-ДАМИ ВСЛЕДСТВИЕ АВАРИИ НА ЧЕРНОБЫЛЬСКОЙ АЭС ПО ДАННЫМ ОПРОБОВАНИЯ ВОДЫ ОТ 13—14 МАЯ 1986 Г.

26 апреля 1986 г. в 01 ч 23 мин произошел взрыв в четвертом блоке Чернобыльской АЭС, в результате которого в атмосферу было выброшено большое количество радионуклидов и «горячих» частиц. Их выделение в атмосферу из разрушенного реактора продолжалось и позже до завершения изоляции аварийного блока. Таким образом, в течение довольно длительного периода проходившие над Чернобылем воздушные массы переносили и рассеивали радионуклиды по пути своего перемещения на огромных пространствах в Европе и не только там. Следы радиоактивных выбросов Чернобыля были обнаружены даже на Американском континенте.

Выброшенные при взрыве и в первые часы после него радионуклиды переносились воздушными массами через Белоруссию, Польшу, Литву и Западную Латвию на Балтийское море, Скандинавию и Финляндию. Описав дугу над Южной Финляндией, часть воздушных масс направилась на юг и 29—30 апреля достигла Ленинградской и Псковской областей, Северо-Восточной Эстонии, Псковско-Чудского озера и задела западным краем расположенные у его берегов районы Эстонии (рис. 1) (Arvela и др., 1989; Danell и др., 1989). Официальная отечественная

Рис. 1. Траектории перемещения воздушных масс, проходивших над Чернобылем 26. 04. 1986 г. в 00, 06, 12 и 18 часов (Arvela и др., 1989).

Fig. 1. TRADOS trajectories from Chernobyl 26 April 1986 (Arvela et al., 1989).

^{*} Eesti Teaduste Akadeemia Keemilise ja Bioloogilise Füüsika Instituut (Институт химической и биологической физики Академии наук Эстонии). 200105 Tallinn, Lenini pst. 10. Estonia.

информация о радиоактивных выпадениях в связи с аварией в Чернобыле в начале мая еще полностью отсутствовала, в то время как зарубежные информационные агенства распространяли тревожные сведения о значительном загрязнении поверхности земли выпавшими радионуклидами в Финляндии, Скандинавии и в Западной Европе. Поэтому во время очередного отбора проб воды, проводимого 13—14 мая в рамках выполнения программы исследования Псковско-Чудского озера, наряду с обычными гидрохимическими пробами решили отобрать также специальные пробы для определения радиоактивности воды с целью рекогносцировки радиационной обстановки на озере и изучения уровня возможного радиоактивного загрязнения воды. Результаты этого исследования приводятся ниже.

Методы исследования

Для исследования свойств и состава воды Псковско-Чудского озера в 1986 г. были взяты пробы в 29 постоянных точках, распределенных относительно равномерно по акватории озера и в устьях рек Эмайыги и Великой (рис. 2). Пробы воды для гидрохимического и радиометриче-

Рис. 2. Распределение точек опробования воды и наблюдений на акватории Псковско-Чудского озера.

Fig. 2. The location scheme of observation and water sampling sites on the water area of Lakes Peipsi-Pihkva.

ского анализов отбирались пластмассовым ведром с борта судна из поверхностного слоя (до глубины ~30 см от поверхности) и хранились в пластмассовых канистрах. Пробы для определения цветности воды, содержания питательных элементов и хлорофилла *а* отбирались батометром с глубины ~0,5 м. Прозрачность воды определялась методом стандартного диска, Еh и pH воды — портативным ионометром типа OP-109 фирмы «Radelkis» (Будапешт).

Температура воды и содержание в ней растворенного кислорода измерялись портативным термо-оксиметром «Оксимет-1», температура воздуха в каждой точке отбора проб — аспирационным психрометром типа MB-4M.

Гидрохимический анализ проб воды выполнялся по единой общесоюзной методике в лаборатории Эстонского республиканского управления по гидрометеорологии и контролю природной среды. Цветность и содержание в воде питательных элементов и хлорофилла *а* определялись в лаборатории Института зоологии и ботаники АН Эстонии (ИЗВ АН Эстонии). Суммарная γ- и β-активность проб воды определялась в лаборатории Института химической и биологической физики АН Эстонии (ИХБФ АН Эстонии) на β-спектрометре типа «BackBeta-1215» (LKB-Wallace; Швеция).

Полученные данные замеров и анализов обрабатывались методами математической статистики. По специальной топографической программе на ЭВМ типа «Apple» была составлена карта изолиний радиоактивности воды и плотности радиоактивного загрязнения Псковско-Чудского озера.

Метеорологическая обстановка на Псковско-Чудском озере в начале мая 1986 г.

Конец апреля 1986 г. отличался исключительно теплой погодой. В Тийрикоя температура воздуха 28 апреля поднялась до 22 °С. Количество осадков в III декаде апреля достигало 80—150% нормы. Наибольшее количество осадков выпало в апреле в северном Причудье (Иисаку — 45,8 мм, Алайые — 40,9 мм). Несколько меньшее количество осадков выпало в районах, прилегающих к западному побережью Псковско-Чудского озера (Ахья — 38,8 мм, Мехикоорма — 37,5 мм, Ряпина — 35,5 мм). В начале мая (до конца первой декады) удерживалась сухая теплая погода. Максимальная температура воздуха 22—26°С отмечена 8 и 9 мая. Небольшие дожди выпали 1 и 10 мая, а наиболее интенсивные дожди наблюдались в период с 11 по 16 мая. В северо-западных прибрежных районах Чудского озера наиболее сильные дожди прошли 11 мая в Тийрикоя (8,0 мм) и 12 мая в Туду (7,6 мм). Дули легкие ветры различных направлений (Метеорологический ежемесячник, 1986).

В дни отбора проб (13 и 14 мая) стояла тихая сухая солнечная погода. Температура воздуха на акватории озера в местах отбора проб на Чудском озере колебалась от 7,8 до 12,6 °С, средняя 9,6 °С; на озере Теплом от 13,2 до 15,2 °С, средняя 14,4 °С; на Псковском озере от 13,4 до 17,2 °С, средняя 15,8 °С, В устье р. Эмайыги (Праага) температура воздуха была 10,2 °С, в устье р. Великой 18,2 °С.

Результаты исследования

Состав воды в Чудском, Теплом и Псковском озерах (вместе Псковско-Чудское озеро) и в устьях рек Эмайыги и Великой (табл. 1) довольно характерен для этого озера (Пихлак и др., 1987). Значительные изменения по отношению к природному фону (табл. 2) претерпела в основном только радиоактивность воды в приповерхностном ~30 см

~		and a state of the state of the	1	-			-							
ohnv		р. Великая (устье)	15	14,8	8,2	83,6	7,96	+534	233,0	6,8	41,3	9,4	8,5	27,9
Tab	1.00	р. Эмайыги (устье)	14	14,8	5,2	53,0	7,81	+512	342,6	6,2	61,3	15,4	12,4	39,9
		Коэфф. вариации, %	13	11,6	7,4	4,5	0,6	3,6	12,6	30,5	14,2	18,7	22,6	14,5
6977 4047	oda	$\pm \sigma_{n-1}$	12	1,45	0,80	4,75	0,048	19,3	23,10	2,84	4,58	1,38	1,76	3,72
4 mag 1986 r.	Псковское озе	минмакс. средн.	11	$\frac{11,0-14,2}{12,5\pm1,16}$	$\frac{11,0-14,2}{10,9\pm0,64}$	$\frac{97,7-110,6}{105,3\pm3,80}$	7,89-8,01 $7,96\pm0,038$	+511-562 $+539\pm15,4$	$\frac{150,4{}218,4}{182,6{\pm}18,48}$	6,8-13,5 $9,3\pm2,27$	$\frac{23,0-35,1}{29,4\pm3,35}$	5,8-9,6 $7,4\pm1,10$	$\frac{6,7-11,3}{7,8\pm1,41}$	21,6-30,3 25.7 ± 2.98
13-1		u	10	9	9	9	9	9	9	9	9	9	9	9
то вин	Теплое озеро	Коэфф. вариации, %	6	8,5	9,4	7,4	1,2	3,3	10,1	32,6	5,3	13,4	10,1	10,7
опробова		$\pm \sigma_{n-1}$	8	1,02	66'0	7,48	0,098	18,0	17,08	2,72	1,42	0,98	0,79	2,58
сого озера по данным о		минмакс. средн.	7	$\frac{11,2-13,4}{12,0\pm1,00}$	9,2-11,4 10,6±0,97	$\frac{91,0-107,3}{100,6\pm7,26}$	7,73-7,95 $7,87\pm0,096$	+518-562 $+540\pm17,6$	$\frac{145,8-184,9}{168,5\pm16,74}$	6,0-12,2 $8,4\pm 2,66$	$\frac{24,6-27,0}{26,6\pm1,39}$	6,1-8,6 7,3±0,96	7,1-8,9 $7,8\pm0,77$	$\frac{22,1-27,9}{24.1\pm2.53}$
		2	6	4	4	4	4	4	4	4	4	4	4	4
ко-Чудс		Коэфф. вариации, %	5	14,6	7,2	5,6	1,7	3,7	5,6	26,0	6,9	17,71	10,9	10,3
Псковс	00	$\pm \sigma_{n-1}$	4	1,11	1,06	7,21	0,138	18,8	13,74	2,75	2,23	2,08	1,08	3,68
Состав воды	Чудское озеј	минмакс. средн.	3	6,0-8,8 $7,6\pm0,53$	$12,3-15,8$ $14,7\pm0,50$	$\frac{113,4-138,5}{127,6\pm3,43}$	7,96-8,46 $8,22\pm0,017$	+483-542 +513±8.9	214,0-264,4 $243,8\pm 6,53$	3,5-14,0 10,6±1,31	34, 3-42, 1 $32, 2\pm 1, 06$	8,9-16,8 $11,7\pm0.99$	7,8-12,1 $9,9\pm0,52$	$28,8\pm 39,9$ $35,8\pm 1.75$
-604	20	Ę	2	17	17	17	17	17	17	17	17	17 1	17	17
-2.08 14 04411 19.415	11	Показатель	1	Гемпература оды, °С	астворимый)2, мг/л	Тасыщение оды, О ₂ , %	Н воды	ch, mB	Сумма главных юнов, мг/л	Va++K+, mr/m	Ca2+, mr/л	Mg ²⁺ , mr/.n	СІ-, мг/л	SO ²⁻ , Mr/л

15	139,1	2,83	18,53	80	1,1	8,9	48	535	36,80	27,60
14	207,4	4,33	6,80	80	6'0	9,4	06	1847 1	32,71	24,53
13	14,1	13,3	40,2	11,2	18,0	89,1	14,4	18,5 1	10,3	10,3
12	14,52	0,275	4,11	7,36	0,24	11,83	6,41	290,5	3,54	2,66
11	$\frac{83,0-122,0}{103,0\pm11,62}$	$\frac{1,67-2,38}{2,07\pm0,22}$	$\frac{5,27-16,42}{10,24\pm3,29}$	60-80 $65,8\pm 5,89$	$\frac{1,0-1,6}{1,33\pm0,19}$	2,6-30,5 13,3±9,46	35-53 $44,5\pm5,13$	$\frac{1062 - 1913}{1568 \pm 232,4}$	30,67-40,24 $34,34\pm2,83$	$\frac{23,00-30,18}{25,75\pm8,13}$
10	9	9	9	9	9	9	9	9	9	9
6	10,9	7,4	38,2	8,9	12,1	10,9	20,0	16,1	15,5	21,89
8	10,26	0,142	5,00	5,77	0,17	1,09	8,22	278,1	4,63	4,55
7	$\frac{79,9-102,5}{94,3\pm10,05}$	$\frac{1,73-2,06}{1,93\pm0,140}$	7,13-18,80 13,06±4,90	$65,0\pm 5,65$	$\frac{1,2-1,5}{1,4\pm0,05}$	$\frac{8.9-11.5}{10.0\pm1.07}$	34-53 $41,2\pm 8,06$	1440-2066 $1729\pm272,5$	$\frac{23,17-33,39}{29,81\pm4,54}$	$\frac{16,36-25,04}{20,79\pm4,46}$
9	4	4	4	4	ŝ	4	4	4	4	4
5	7,1	7,6	52,8	25,3	19,4	63,2	37,5	19,6	11,6	11,2
4	9,86	0,217	69'9	11,01	0,44	4,55	9,64	227,5	3,45	2,56
3	$\frac{120,8{-}156,8}{138,2{\pm}4,69}$	2,52-3,30 $2,87\pm0,103$	5,60-29,13 12,68±3,18	25,0-70 $43,5\pm 5,23$	$\frac{1,5-3,0}{2,27\pm0,21}$	0,5-14,8 7,2±2,16	13-44 $25,7\pm4,58$	896-1655 1161±108,2	$\frac{25,22-40,21}{30,45\pm1,64}$	$\frac{19,94-30,16}{22,87\pm1,22}$
2	17	17	17	17	17	17	17	17	17	17
1	НСО ⁻ , мг/л	Общая жесткость, мг-экв./л	Радиоактивность воды (A _v), нКи/л	Цветность, град.*	Прозрачность, м*	Хлорофилл а, мг/м ^{3*}	Фосфор, Mr/M ^{3*}	Asor, mr/m ^{3*}	Бихроматная окисл., мг О ₂ /л*	Содержание ОВ по бихроматной окисл., мг/л

Примечание. Точность всех средних величии показателей рассчитана с доверительной вероятностью 0,95. * Данные ИЗБАН Эстонии.

слое вследствие радиоактивных выпадений на акваторию Псковско-Чудского озера. Степень радиоактивного загрязнения воды в озере далеко превзошла даже самые худшие наши опасения. Так, суммарная у- и вактивность воды в местах взятия проб на озере (см. табл. 1) превышала в 1700—9600 раз естественный фон (табл. 2), который в Псковско-Чудском озере близок к всемирному среднему фону для поверхностных вод (Добровольский, 1983), а средняя радиоактивность воды по озерам отдельно взятым была: в Чудском озере в 4171, Теплом озере в 4296 и Псковском озере в 3372 раза выше фона. Следует иметь в виду, что повышение радиоактивности было кратковременным. Через месяц (17-18 июня) при повторном опробовании воды для определения радиоактивности последняя во всех точках оказалось уже ниже чувствительности прибора (0,3 нКи/дм³). Подобное быстрое снижение радиоактивности воды наблюдалось и в Австрии на оз. Целлер-Зе. После выпадения радиоактивных осадков радиоактивность воды в этом озере 3 мая 1986 г. достигала 2,1 нКи/дм³. К 13 мая, т.е. через 10 суток, она снизилась до 0,25 нКи/дм3, т. е. в 8,4 раза (Schönhoffer и др., 1987). Это, видимо, обусловлено перемешиванием тонкого загрязненного поверхностного слоя воды с основной массой чистой воды при ветровом волнении и течениями, осаждением радиоактивного аэрозоля на дно водоема, а также распадом короткоживущих радионуклидов (131J, 125J, 103Ru, 129Te, 59Zr и др.). Изотопный состав выпавших на Псковско-Чудское озеро радионуклидов нами не был определен. Измерялась только суммарная γ- и βактивность воды. В последующие годы после аварии в Чернобыле были неоднократно отобраны пробы на определение содержания U и Th в воде Псковско-Чудского озера. Результаты анализа проб сухого остатка воды еще не получены.

Распределение уровней радиоактивности воды (A_v , нКи/дм³) и соответствующих им **приведенных плотностей** радиоактивного загрязнения акватории озер (Red. \bar{A}_s , Ки/км²) показаны изолиниями на рис. 3. Приведенная плотность радиоактивного загрязнения была нами применена исходя из следующих соображений.

Выпавшие на водную поверхность радионуклиды, как и любые другие выпадения, погружаются на различную глубину и распределяются в толще воды в зависимости от скорости и времени их осаждения. Поэтому активность в единице объема воды еще не характеризует плотности выпадения загрязнения на поверхность водоема, т.е. не характеризует общего количества радионуклидов, выпавших на единицу водной поверх-

Таблица 2

21 2 2 5		Соде	ержание		Акти	ивность	
Элемент	п	минмакс. средн. 10-7 г/л	$\pm \sigma_{n-1}$	Коэффи- циент вариа- ции, %	минмакс. средн. пКи/дм ³	$\pm \sigma_{n-1}$	Доля от суммар- ной, %
238U	7	<u>2,2—37,1</u> 15,3	12,48	81,6	<u>0,14—2,41</u> 0,99	0,812	32,7
²³² Th	7	<u>0,4—2,2</u> 1,3	0,69	51,9	0,013-0,070 0,042	0,0286	1,4
40K	7	2,90	0	0	2,00	0	65,9
Σ	21	1.114	-	1	$\frac{2,21-4,47}{3,04}$	0,824	100,0

Фоновая радиоактивность вод Чудского озера (1984 г.) по содержанию в них природных радионуклидов

ности. Поэтому для получения соответствующей характеристики мы приводили общее количество радионуклидов (выраженных в Ки), содержащихся в рассматриваемом столбе воды (в нашем случае по мощности равный h=30 см), к единице поверхности, обозначив этот показатель как Red. As, Ки/км² (рис. 3). В наших расчетах мы принимали условно, что глубже, чем на 30 см от поверхности воды, радиоактивное загрязнение в момент отбора проб еще не погружалось (из этого слоя и были отобраны пробы). Тем самым мы могли допустить ошибку, что весьма вероятно, так как об активности более глубоких слоев воды мы ничего не знаем. Однако наша ошибка могла быть только в меньшую сторону, и полученные нами приведенные плотности загрязнения могут оказаться заниженными по сравнению с действительными. Поэтому наши данные следует рассматривать здесь только как сугубо ориентировочную оценку плотности загрязнения озера. Допущенная нами ошибка, видимо, не очень велика, поскольку полученные результаты не противоречат результатам исследований, проведенных в Финляндии и Швеции (Arvela и др., 1989; Danell и др., 1989).

Рис. 3. Распределение радноактивности воды \bar{A}_v , нКи/дм³ и приведенной плотности радноактивного загрязнения Red. \bar{A}_s , Ки/км² (в 30 см слое воды) на акватории Псковско-Чудского озера 13—14 мая 1986 г. (Цифры на изолиниях и в устьях рек даны Ки/дм³.) Fig. 3. Radioactivity of 30 cm surface layer (A_v , nCi·dm⁻³) and the disposition of radioactive pollution density (Red. \bar{A}_s , Ci·km⁺²) on May 13—14, 1986 on the water area of Lakes Peipsi-Pihkva.

Как видно по рис. З, участки радиоактивно более загрязненных вод расположены вдоль северного и восточного берегов Чудского озера. Следовательно, на эти участки и прилегающие к ним зоны побережья выпало больше радиоактивных осадков. Этот вывод хорощо согласуется с данными о распределении количества осадков на Северо-Востоке Эстонии (Метеорологический ежемесячник, 1986), а также с представлением о путях перемещения загрязненных радионуклидами воздушных масс через Северо-Восточную Эстонию на юг и юго-восток, на акваторию Псковско-Чудского озера и прилегающие районы Ленинградской и Псковской областей, причем эти воздушные массы мало затронули районы на западном побережье Чудского озера (рис. 1). Действительно, радиоактивность воды в р. Эмайыги (Праага) и на всей западной части акватории Чудского озера в 2-3 раза ниже, чем на восточной. Результаты опробования воды оз. Выртсъярв и других озер (Вильянди, Карула и Выйстре) Центральной Эстонии, как и впадающих в них рек, не показали присутствия радионуклидов в их водах во второй половине мая 1986 г. Это свидетельствует о незначительном количестве радиоактивных выпадений западнее от дуги, соединяющей устье р. Раннапунгерья на севере Чудского озера с устьем р. Желча на юге его (рис. 3). Акватория Теплого озера и оба его берега, видимо, загрязнены в одинаковой степени. Западное побережье и часть акватории Псковского озера, явно, загрязнены в большей степени, чем восточные.

Так как в оз. Выртсъярв, из которой вытекает р. Эмайыги, радиоактивного загрязнения не обнаружено, отмеченная высокая радиоактивность воды в устье реки связана с загрязнением ее нижнего течения. Не исключено, что оно поступило с водой р. Ахья, впадающей в р. Эмайыги вблизи ее устья, а р. Ахья течет с юга, с территории, на которую, как мы указывали выше, по нашему мнению, выпали радиоактивные осадки. Сказанное подтверждается также данными о выносе радионуклидов реками, впадающими в Псковско-Чудское озеро, с единицы площади их водосборных площадей (табл. 3).

Таблица 3

	Водо-	Сток	Радио- актив-	Сток рад	Вынос радно- нукли- дов с		
Бассейн реки	соорная площадь <i>S</i> , км ²	воды по реке*, м ³ /с	ность воды (A _v), нКи/дм ³	10—3Ки/с	Ки/сут	единицы площади водо- сбора, мКи/ км ² · сут	
Раннапунгерья Эмайыги Желча Выханду Пиуза Великая	665 7850 791 1100 796 25200	15 100 16 25 12 260	29,13 6,80 24,00 18,80 16,40 18,53	0,437 0,680 0,384 0,470 0,197 4,818	37,8 58,8 33,2 40,6 17,0 416,3	56,84 7,49 41,94 36,91 21,36 16,52	
Σ	35611	428	-		603,7	средн. 16,95	
Отток через р. Нарву	47800	717	13,5	9,680	836,3	17,5	

Ориентировочная оценка максимального суточного стока радионуклидов с водосборных площадей некоторых рек в Псковско-Чудское озеро и отток их из озера через р. Нарву 13—14 мая 1986 г.

* Из-за весеннего паводка 13—14 мая сток воды в реках превышал норму более чем в 2 раза.

Зона актив- ности II I I + II Распре активн озерам	Актив интерва ний (ность в лах изоли- рис. 2)		Чуд	ское оз	веро (Ч)		•	Тепло	ре озерс	• (T)			Псковс	кое озе	ро (П)			Bcer	0	
		(енная плотность загряз- <и/км ²	Занимаемая площадь		Суммарная актив- ность А		Занима	емая пло	щадь Суммарная актив- ность А		Занимаемая площадь			Суммарная ность	актив- А	Занимаемая площадь		Суммарная актив- ность А			
	. А _v , нКи/дм ³ минмакс.	Средняя привед K поверхности прадиодержити радиоактивного нения Red. $\overline{A}_{\rm s}$,	KM ²	% (от пло- щади Ч)	% (от пло- щади П-Ч)	Қи	%	KM ²	% (от пло- щади Т)	% (от пло- щади П-Ч)	Ки	%	KM ²	% (от пло- щади П)	% (от пло- щади П-Ч	Ки	%	KM ²	.% (от пло- щади П-Ч)	Ки	%
II	26 - 30 22 - 26 18 - 22	8,4 7,2 6,0	2,49 22,42 72,55	0,09 0,86 2,78	0,07 0,63 2,04	20,92 161,42 435,30	0,22 1,72 4,64				 25,80	 2,68		Ξ		111		2,49 22,42 76,85	0,07 0,63 2,16	20,92 161,42 461,10	0,17 1,29 3,68
11	$\boldsymbol{\varSigma}^{30}_{18}$	5,4—9,0	97,46	3,73	2,74	617,64	6,58	4,30	1,82	0,12	25,80	2,68	-		-	-	-	101,76	2,86	643,44	5,14
I	14—18 10—14 <10	4,8 3,2 2,4	838,58 905,42 771,54	32,09 34,65 29,53	23,57 25,45 21,68	4025,18 2897,34 1851,64	42,86 30,85 19,71	141,60 51,50 38,60	60,00 21,82 16,36	3,98 1,45 1,08	679,68 164,80 92,64	70,58 17,12 9,62	103,94 278,42 326,64	14,66 39,27 46,07	2,92 7,83 9,18	498,91 890,94 783,94	22,95 40,99 36,06	1084,12 1235,34 1136,78	30,47 34,72 31,95	5203,77 3953,08 2728,27	41,59 31,58 21,79
I	$\Sigma_{<10}^{18}$	<5,4	2515,54	96,27	70,70	8774,21	93,42	231,7	98,18	6,51	937,12	97,32	709,00	100,0	19,93	2173,79	100,0	3456,24	97,14	11885,12	94,86
I+II	Σ^{30}	0—9,0	2613,00	100,00	73,44	9391,85	100,0	236,00	100,00	6,63	962,92	100,0	709,00	100,0	19,93	2173,79	100,0	3558,00	100,0	12528,56	100,0
Распределение суммарной активности по Ч, Т, П озерам		-	-	-	9391,85	74,96	-	-	-	962,92	7,69	-	-	-	2173,79	17,35	-	-	12528,56	100,0	
Средневзвешен- ная Red. Ā _s , Зона II Кн/км ² по Зона I зонам Зона I+II			6,34 3,49 3,57						6,00 4,04 4,08				 3,07 3,07					6,32 3,44 3,52			

Распределение величины площадей распространения радиоактивных загрязнений различной плотности на акватории Псковско-Чудского озера 13-14 мая 1986 г.

Таблица 4

озера сопоставима с плотностью загрязнения районов на территории Финляндии и Швеции, на которые также выпали радиоактивные осадки. На ограниченной площади озера уровень загрязнения достиг опасных величин, так как был превышен почасовой предел дозы облучения равный 0,5 µSv · h-1 (почти в 1,6 раза в устье реки Раннапунгерья). Хотя через месяц радиоактивность воды в озере резко понизилась и стала ниже предела чувствительности измерительного прибора (0,3 Ки/дм3). следует опасаться, что осевшие на дно озера долгоживущие радионуклиды, главным образом ¹³⁷Се, будут оказывать и впредь вредное воздействие на водные организмы и экосистему озера в целом, попадать в пищевые цепи рыб и оттуда к людям. Поэтому очевидна необходимость проведения соответствующих гидрохимических, гидробиологических и санитарно-гигиенических исследований, тем более, что влияние радиоактивного загрязнения Псковско-Чудского озера на его экосистему и здоровье населения в приозерных районах к настоящему времени еще совершенно не изучено.

ЛИТЕРАТУРА

Гидрометеорологический режим озер и водохранилищ СССР. Чудско-Псковское озеро. 1983. Под ред. А. А. Соколова. Ленинград, Гидрометеоиздат. Добровольский В. В. 1983. География микроэлементов. Глобальное рассеяние. Москва,

- Мысль.
- Корякин Ю. И. 1990. Сколько стонт Чернобыль. Природа, № 10, 65-74.
- Метеорологический ежемесячник. 1986. Вып. 4. Часть II, 1986 г. № 4 и 5. Обнинск, ВНИИГМН-МИД.
- Пихлак А., Маремяэ Э., Линдпере Л., Милиус А., Стараст Х. 1987. Гидрохимическое состояние вод Псковско-Чудского озера в июне 1985 г. - Изв. АН ЭССР. Биол,
- 36, 2, 133-145.
 Arvela, H., Markanen, M., Lemmelä, H., Blomqvist, L. 1989. Environmental gamma radiation and fallout measurements in Finland, 1986-87. Supplement 2 to Annual Report STUK-A74. STUK-A76 July 1989. Helsinki.
 Danell, K., Neilin, P., Wickman, G. 1989. ¹³⁷Caesium in Northern Swedish Moose: The First Year After the Chernobyl Accident. AMBIO, 18, № 2, 108-111.

Schönhoffer, F., Weisz, J. 1987. Measurement by ultra low lewel Liquid Scintillation counting following the Chernobyl accident. — J. Radioanalyt. and Nucl. Chem., 115, № 1, 125—140.

Поступила в редакцию 19/XII 1990

Arno PIHLAK

PEIPSI-PIHKVA JÄRVE VETE SAASTUMINE RADIONUKLIIDIDEGA TŠERNOBÕLI AATOMIELEKTRIJAAMA AVARII TAGAJÄRJEL 13.—14. MAIL 1986 VÕETUD PROOVIDE JÄRGI

Tšernobõli AEJ ühe reaktori plahvatuse tagajärjel õhku paiskunud radionukliididest kanti osa õhuvooludega Peipsi-Pihkva järve ja sellega piirnevate Kirde- ja Lõuna-Eesti alade ning Leningradi ja Pihkva oblasti territooriumi kohale (joon. 1), kus seetõttu esines radioaktiivseid sademeid. Peipsi-Pihkva järve akvatooriumile sadestus autori arvestuste järgi 12 528 Ci radionukliide, mis seisuga 13.—14. mai 1986 põhjustasid radioaktiivsuse järsu tõusu järvevee 30 cm paksuses pindmises kihis kuni $A_v = 5,27 - 29,13$ nCi/dm⁸ ja ka järve suubuvates jõredes (teb. 1). Seedus järve suubuvates jõgedes (tab. 1). Saastus suurenes 1700—9600 korda, võrreldes järve vee varasema radioaktiivsusfooniga, mis oli \bar{A}_v =3,04 pCi/dm³ (tab. 2). Vee aktiivsus oli kuu aega hiljem järve samast kihist võetud proovides madalam kui 0,3 nCi/dm³, seega vähenenud juba enam kui 17,5 korda. Radioaktiivse saastuse levik Peipsi-Pihkva järve akvatooriumil on näidatud joo-

nisel 3.

Peipsi-Pihkva järve akvatooriumil oli radioaktiivse saastuse keskmine tihedus veepinnale redutseeritult Red. \bar{A}_s =3,52 Ci/km². Kõige kõrgema saastusega (Red. \bar{A}_s =5,4 Ci/km²) ala suurus oli 101,8 km² ja selle pinnal keskmine saastustihedus Red.As >6,32 Ci/km². Rannapungerja jõe suudme vastas ületas kiirguse doos elanikkonnale lubatud maksimumi $(0,5 \ \mu S_v h^{-1})$ kuni 1,6 korda. Järve ülejäänud 3456,2 km² suurusel akvatooriumi osal oli veepinna keskmine saastustihedus Red. \bar{A}_{p} =3,44 Ci/km² (tab. 4).

Radionukliide kandus 13.—14. mail 1986 Peipsi-Pihkva järve mööda Velikaja, Zeltša ja Eesti territooriumilt järve suubuvaid suuremaid jõgesid ligikaudu 600 Ci/ööpäevas (tab. 3).

Kesk-Eesti järvede (Võrtsjärv, Viljandi, Karula ja Võistre järv) ja Võrtsjärve suu-buvate jõgede vetes radioaktiivset saastust 1986. aasta mais ei leitud. Peipsi-Pihkva järve vee radioaktiivse saastuse mõju järve ökosüsteemile ja tema kallastel elavate inimeste tervislikule seisundile ei ole uuritud.

Arno PIHLAK

WATER POLLUTION WITH RADIONUCLIDS OF LAKES PEIPSI-PIHKVA AS A RESULT OF THE ACCIDENT OF CHERNOBYL NUCLEAR POWER PLANT ACCORDING TO THE SAMPLES TAKEN ON MAY 13-14, 1986

As a result of the explosion of the Chernobyl reactor, a part of radionuclides emitted into atmosphere was carried by air currents above the territories of Lakes Peipsi-Pihkva and to the surrounding areas in North-East and South-Estonia as well as to the provinces According to our data, 12 528 Ci radionuclids fell to the water area of Lakes Peipsi-Pihkva, which caused a sharp rise in water radioactivity in the 30 cm — surface level of the lake as well as in the rivers flowing into the lake up to \bar{A}_v =5.27-29.13 nCi/dm³ (Table 1).

The rise in radioactivity was 1700-9600 times in comparison to the previous radioactivity fall-out in the lake, which was equal to $\bar{A}_v = 3.04 \text{ pCi/dm}^3$ (Table 2). Water activity in the samples taken from the same layer one month later was less than 0.3 nCi/dm3 thus having decreased more than 17.5 times. Fig. 3 shows the spread of radioactive pollution on the water area of Lakes Peipsi-Pihkva. Average (mean) density of radioactive pollution of water area of Lakes Peipsi-Pihkva reduced to the water surface was equal to Red. \bar{A}_s = 3.52 Ci/km². The surface area of the most-polluted region (Red. \bar{A}_{s} >5.4 Ci/km²) was 101.8 km² and the mean density of the pollution Red. \bar{A}_{s} = =6.32 Ci/km².

The radiation dose in this area exceeded that of the permissible maximum dose for the population, which is $0.5 \ \mu S_v h^{-1}$, up to 1.6 times (on the lake opposite up to the mouth of the river Rannapungerja). On the rest of the lake-water area, with the surface of 3456.2 km², the mean density of water pollution amounted to Red. A_v =3.44 Ci/km² (Table 4). The amount of radionuclids carried into Lakes Peipsi-Pihkva through the Velikaya, Zeltsha and other bigger rivers flowing from the Estonian territory into the lake was approximately 600 Ci/day on May 13-14, 1986. The influence of radioactive pollution of Lakes Peipsi-Pihkva on the ecosystem of the lakes and on the state of health of people living on its coasts has not been studied.