EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. 20. KÕIDE BIOLOOGIA. 1971, NR. 3

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ СС[¬]. ТОМ 20 биология. 1971, № 3

https://doi.org/10.3176/biol.1971.3.11

УДК 631.41

АЙНИ ЛИНДПЕРЕ

О КОРРЕЛЯЦИОННЫХ СВЯЗЯХ МЕЖДУ СОДЕРЖАНИЕМ ЗОЛЬНЫХ ЭЛЕМЕНТОВ, ОБЩЕГО АЗОТА И ЗНАЧЕНИЯМИ PH СФАГНОВОГО ТОРФА

Выявление связей между свойствами торфа позволяет более глубоко изучить процессы, происходящие в торфе. Знание связей между зольными элементами облегчает оценку плодородия торфа, а иногда позволяет вычисление содержания одного элемента через другой.

Из данных литературы (Никонов, 1955; Kaila, Kivekäs, 1956; Нийне, 1965; Воларович и др., 1968) следует, что в торфяных почвах между содержанием кальция и значением pH существует линейная связь. При повышенной зольности увеличивается содержание кальция и железа (Тюремнов, 1949; Никонов, 1955; Воларович и др., 1968), а также фосфора (Тюремнов, 1949; Никонов, 1955), алюминия (Тюремнов, 1949; Воларович и др., 1968) и азота (Никонов 1955, 1956). Чем выше в торфе содержание золы, кальция и алюминия, тем больше и содержание фосфора (Донских, 1966). По данным Х. Нийне (1965), при наличии кальция в торфе до 3% повышается и содержание азота.

Данные анализа 67 проб из поверхностного слоя (5—25 см) и 29 проб из нижнего слоя (40—70 см) торфа верховых болот Эстонии обрабатывались статистическими методами (Бейли, 1962; Võhandu, 1962, Рокицкий, 1967) с целью выявления корреляционных связей между содержанием золы, кремния, кальция, фосфора, калия, железа и азота, а также значением pH. Теснота связей между вышеуказанными элементами вычислялась при помощи коэффициента корреляции. Линейная связь между двумя компонентами позволила вычислить также линейное уравнение регрессии (табл. 1). Арифметические средние анализов и соответствующие им дисперсии приведены в табл. 2. Более точное описание мест отбора проб торфа приведено в ранее опубликованной работе (Линдпере, 1965).

Из приведенных данных (табл. 1) следует, что в поверхностном слое торфа наблюдается особенно тесная положительная корреляция между содержанием золы и кремния, иллюстрацией которой служит рис. 1. Тесная корреляция выявлена также между содержанием общего азота и фосфора (рис. 2), а между содержанием железа и азота наблюдается связь средней тесноты. Слабо коррелируют содержания фосфора, железа и азота с зольностью, а также железа с фосфором. В поверхностном слое торфа содержание кальция, калия и значение pH не имеют линейных связей с содержанием других элементов.

Следует отметить, что в настоящей статье считаются существенными только те связи, корреляционные коэффициенты (r_{xy}) которых более 0,5, несмотря на то, что при n=67 и уровне значимости P=0,05 критическое

Таблица 1

Корреляционные связи между содержанием зольных элементов, общего азота и величинами рН малоразложившегося сфагнового торфа

						and the second
Глубина взятия проб, <i>см</i>	Количе- ство проб, <i>п</i>	Коррелирующие показатели, %		Коэффи- циент кор-	Уравнение регрессии	Ошибка параметра
		x	y	реляции r _{xy}	y = ax + b	a
5—25	67	$\begin{array}{c} {\rm SiO_2} \\ {\rm P_2O_5} \\ {\rm N} \\ {\rm Fe_2O_3} \\ {\rm N} \\ {\rm P_2O_5} \\ {\rm P_2O_5} \end{array}$	3ольность N Fe ₂ O ₃ 3ольность 3ольность 3ольность Fe ₂ O ₃	$\begin{array}{c} 0,892\\ 0,704\\ 0,636\\ 0,634\\ 0,575\\ 0,538\\ 0,521 \end{array}$	y = 1,11x+0,88 y = 5,4x+0,31 y = 0,10x+0,043 y = 12x+1,30 y = 1,7x+1,44 y = 12x+1,74 y = 0,6x+0,067	0,07 0,7 0,02 2 0,3 2 0,1
40—70	29	$\begin{array}{c} 30 \\ \text{Ольность} \\ \text{CaO} \\ P_2 O_5 \\ \text{Fe}_2 O_3 \\ 30 \\ \text{льность} \\ \text{Fe}_2 O_3 \\ \text{CaO} \\ \text{Fe}_2 O_3 \\ 30 \\ \text{льность} \\ 30 \\ \text{льность} \\ \text{CaO} \end{array}$	SiO ₂ N CaO P ₂ O ₅ N PH P ₂ O ₅ N Fe ₂ O ₃ Зольность	$\begin{array}{c} 0,789\\ 0,775\\ 0,771\\ 0,740\\ 0,666\\ 0,604\\ 0,601\\ 0,589\\ 0,565\\ 0,537\\ 0,532\\ \end{array}$	y = 0.52x - 0.13 y = 0.82x + 0.58 y = 14x + 0.09 y = 6x - 0.17 y = 0.015x + 0.026 y = 5.6x + 0.42 y = 0.61x + 3.6 y = 0.30x + 0.030 y = 0.23x + 0.42 y = 0.024x + 0.028 y = 1.36x + 1.2	$\begin{array}{c} 0,08\\ 0,13\\ 2\\ 1\\ 0,003\\ 1,4\\ 0,16\\ 0,08\\ 0,06\\ 0,007\\ 0,42\\ \end{array}$

Таблица 2

Средние содержания зольных элементов и общего азота (% от абсолютно сухого вещества) и значения рН в торфе верховых болот Эстонии

Определяемый	Глубина взя 5—25	тия проб см	Глубина взятия проб 40—70 см	
компонент	Арифметическая средняя	Дисперсия	Арифметическая средняя	Дисперсия
Зольность SiO ₂ CaO P ₂ O ₅ K ₂ O F e_2 O ₃ N pH _{H2} O	2,72 1,65 0,27 0,078 0,077 0,12 0,74 3,77	0,62 0,40 0,01 0,001 0,0008 0,002 0,07 0,05	$\begin{array}{c} 1.54\\ 0.67\\ 0.20\\ 0.049\\ 0.027\\ 0.065\\ 0.74\\ 3.75\end{array}$	$\begin{array}{c} 0,55\\ 0,24\\ 0,01\\ 0,0003\\ 0,0002\\ 0,001\\ 0,05\\ 0,08 \end{array}$

значение коэффициента r=0,241, т. е. линейная связь между признаками существует уже начиная с указанного значения. При n=29 и P=0,05 критическое значение коэффициента корреляции r=0,368.

Как в верхнем, так и в нижнем слое торфа существенные линейные связи наблюдаются между содержанием золы и кремния, золы и железа, золы и фосфора, золы и азота, азота и фосфора, азота и железа, а также железа и фосфора. Наиболее тесная связь выявлена также между содержанием золы и кремния, азота и фосфора. В отличие от связей, имеющихся между компонентами в поверхностном слое торфа, в нижнем слое торфа положительная корреляция наблюдается между содержанием

Рис. 1. Зависимость зольности торфа поверхностного слоя верховых болот от содержания кремния.

Рис. 2. Зависимость содержания общего азота в торфе поверхностного слоя верховых болот от содержания фосфора.

кальция и азота, железа и кальция, кальция и золы, кальция и pH. Содержание калия как в верхнем, так и в нижнем горизонтах торфа не имеет линейных связей с содержанием других элементов.

ЛИТЕРАТУРА

Бейли Н., 1962. Статистические методы в биологии. М.

Воларович М. П., Копенкин В. Д., Король Н. Т., Лиштван И. И., Чураев Н. В., 1968. Исследование корреляционных связей между свойствами торфов. Тр. Калининск. политехн. ин-та, вып. 2 (15) : 224-230.

Донских И. Н., 1966. Формы аккумуляции и степень подвижности азота в основных типах торфяных почв северо-запада РСФСР. Зап. Ленингр. с.-х. ин-та **105** (1) : 86–92

Линдпере А. В., 1965. Агрохимическая характеристика верховых сфагновых торфиников Эстонии. Почвоведение (2) : 52-57.

Нийне Х. А., 1965. Об агрохимических свойствах торфяных почв Эстонской ССР. Автореф. канд. дисс. Таллин.

Никонов М. Н., 1955. Происхождение и состав золы торфов лесной зоны. Тр. Ин-та леса 26 : 135—152.

Никонов М. Н., 1956. Агрохимическая характеристика различных видов торфа и закономерности ее изменения. Тр. конференции по мелиорации и освоению болотных и заболоченных почв. Минск : 438—449. Рокицкий П. Ф., 1967. Биологическая статистика. Минск.

Тюремнов С. Н., 1949. Торфяные месторождения и их разведка. М.-Л.

Kaila A., Kivekäs J., 1956. Distribution of extractable calcium, magnesium, potassium and sodium in various depths of some Virgin peat soils. Maataloustieteellinen aikakauskirja 28 (4) : 237-247.

Võhandu L., 1962. Arvutusmeetodid I. Tartu.

Институт зоологии и ботаники Академии наук Эстонской ССР Поступила в редакцию 5/VI 1970

AINI LINDPERE

SFAGNUMITURBA TUHAELEMENTIDE, LÄMMASTIKUSISALDUSE JA pH KORRELATSIOONIST

Resümee

Artiklis esitatakse vähelagunenud sfagnumiturba tuha, SiO₂-, CaO-, P₂O₅-, K₂O-, Fe₂O₃-, N-sisalduse ja pH vahelised lineaarsed seosed, kasutades selleks korrelatsiooni-kordajaid ja regressioonisirge võrrandeid.

Eesti NSV Teaduste Akadeemia Zooloogia ja Botaanika Instituut Toimetusse saabunud 5. VI 1970

AINI LINDPERE

THE CORRELATIONS BETWEEN THE CONTENTS OF MINERAL ELEMENTS, TOTAL NITROGEN AND THE VALUES OF pH OF SPHAGNUM BOG PEAT

Summary

The correlations between the contents of mineral elements — SiO₂, CaO, P₂O₅, Fe₂O₃, K₂O — ash, total N and the pH values of Sphagnum peat were calculated.

Academy of Sciences of the Estonian SSR, Institute of Zoology and Botany

Received June 5, 1970