EESTI NSV TEADUSTE AKADEEMIA TOIMETISED, 28, KOIDE BIOLOOGIA, 1979, NR.)

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 28 БИОЛОГИЯ. 1979, № 2

https://doi.org/10.3176/biol.1979.2.10

Айни ЛИНДПЕРЕ, Калью УТСАЛ

УДК 556,555.7

РЕНТГЕНДИФРАКТОМЕТРИЧЕСКОЕ ИССЛЕДОВАНИЕ ПЕЛОГЕНА ПРОФУНДАЛИ ОЗЕР ЭСТОНИИ

Минералогический состав донных отложений представляет большой лимнологический и практический интерес. Однако данных о минералогии пелогена озер, в том числе и озер Эстонии, опубликовано совсем мало.

В данной статье анализируются данные рентгендифрактометрических исследований пелогена профундали 92 озер Эстонии. В этой глубокой части озера лучше всего протекает интеграция аллохтонного и сложившегося в водоеме автохтонного материала.

Материал и методика

Исследуемые озера (таблица) рассеяно расположены по всей территории республики, и следовательно, находятся в разных ландшафтах. Они разные по площади (1—708 га), глубине (0,5—35 м), условиям проточности и другим признакам, что обусловливает неоднородность химических и биологических свойств водоемов. На основе гидрохими-ческой типологии озер Эстонии (Симм, 1973; Simm, 1975) изученные нами водоемы можно разделить на пять типов: А - проточные, на моренных водосборах с карбонатными почвами, В — проточные, на заболоченных водосборах, С — непроточные, на песчаных водосборах, Д непроточные, на известняковых водосборах с карбонатными почвами и Е — непроточные, на водосборах верховых болот. По трофности (Маеmets, 1974) среди исследованных нами озер было 44 эвтрофных, 17 дисэвтрофных, 15 олиготрофных, 10 дистрофных, 3 семидистрофных и 3 алкалитрофных.

Образцы для изучения готовились в лаборатории геобиохимии Института зоологии и ботаники АН ЭССР. Пробы отбирались в глубоком месте озера с поверхностного (0-20 см) слоя донных отложений батометром Руттнера в течение шести (1971—1976) лет. Образцы фильтровали через стеклянный фильтр № 1, сушили при температуре 60°С, измельчали и просеивали через сито диаметром отверстий 0,5 мм. Одну часть образцов подвергали химическому анализу для определения содержания зольных элементов, другую — рентгендифрактометрическому анализу.

Дифрактометрические исследования проводились в кабинете минералогии Тартуского государственного университета на рентгеноустановках УРС-50 ИМ и ДРОН-05, усовершенствованных для более точного определения рефлексов и диффузного максимума при малых углах Θ (Утсал, 1971).

Рентгендифрактометрический анализ. Минералы имеют характерные кристаллические структуры, определение которых не представляет особых трудностей для рентгенографического метода даже в том случае, если размер исследуемых частиц меньше 0,001 *мм*. Минеральные частицы пелогена озер Эстонии нередко были очень маленькими и поэтому другие более ранние методы минералогических исследований здесь неприменимы. К сожалению, в изученных образцах минеральные частицы всегда встречались с органическим веществом, что снижало интенсивность рефлексов кристаллических фаз (=минералов) на дифрактограмме, а также точность их количественного определения. Анализировались порошковые препараты размером 26×20 *мм* и толщиной слоя 0,3 *мм* (на стекле), для приготовления которых расходовалось около 100 *мг* матерналов. Дифрактограммы снимались в пределах углов Θ 1—45°, для чего использовалось отфильтрованное Fе_{ка}-излучение. Напряжение на трубке БСВ-6 составляло 25 *кВ* и сила анодного тока — 10 *мA*.

Количественное определение минералов в донных отложениях озер основывается на анализе смесей, приготовленных из чистых минералов. При изучении искусственных смесей точность определения таких минералов, как кварц, кальцит, доломит, гематит и другие, достигала $\pm 1\%$ (абс.), а при анализе пелогена озер, где кристаллические фазы сопровождаются аморфной органикой и разными примесями коллоидных окисей железа и кремния, точность определения заметно снижалась. Повторные исследования показали, что относительная ошибка не превышала $\pm 5\%$.

В связи с характером используемой методики сумма отдельных минералов всегда принималась за 100%, несмотря на то, какой процент они образуют от общего веса образца. Поэтому приведенные в таблице данные не характеризуют образцы донных отложений в целом, а только их кристаллическую фазу.

Качественный и количественный состав минералов в образцах определяли по положению и интенсивности характерных рефлексов на дифрактограмме, а присутствие аморфной органики — по диффузному максимуму. В эксперименте установлено, что если в образце органического вещества меньше 20%, то его количество, определенное дифрактометрически по едва заметному диффузному максимуму, мало достоверно. Точность определения, однако, возрастает с увеличением количества аморфной органики в образце выше 50%, как это имеет место с природными образцами, изученными нами. В таком случае на дифрактограмме проявлялся интенсивный диффузный пик с максимумом в пределах углов Θ 12—14°.

По нашим ранним исследованиям (Утсал, 1971; Лыокене, Утсал, 1971) и на основе литературных данных изучения органического вещества в осадках и породах (Дубовик, Четверикова, 1974; Куприн, Сорокин, 1976), известно, что местоположение диффузного максимума используется для установления состава аморфного органического вещества. В то же время измеренные интенсивности диффузного максимума на дифрактограмме можно с успехом использовать в качестве количественного определения органики в пелогене озер (Утсал и др., 1977).

В данной работе проведена только качественная оценка аморфной органики.

(на кристаллическую фазу, %)	Прочие	10	Пирит 1% Ангидрит 5% Пирит (следы), Пирит (следы),
	Гидро- слюды+ хлорит	6	10
	Хлорит	8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Гидро- слюды	2	7 200 200 200 200 200 200 200 200 200 200
	Полевые шпаты	9	ດສະຫຼາງກາງ ມີຊີ້ສາດ + 5000 & 50 ສະຫຼາງ 1. ເ
	Доломит	5	6 9 10 10 10 10 22 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	Қальцит	4	50 51 51 51 51 51 51 51 51 51 51
	Кварц	3	$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$
100	Глубина отбора проб, м	2	30,00 30,000 30,00
React parameter and the	Озеро и его номер по Х. Рийкоя (Kask, 1964)	Service State 1	Эвтрофные Акеру 1366 Вийсьяату 924 Висси 927 Елиствере 651 Иекси 1224 Каариа 1036 Каариа 1036 Каалиеге 1331 Карула Пиккъярв 1319 Карула Риссаяярв 1319 Карула Пиккъярв 1319 Карула Пиккъярв 1319 Карула Риссаяярв 1319 Саманете 1331 Лаватси 851 Лийнъярв 1401 Лийнъярв 1401 Лийнъярв 1401 Лийнъярв 1401 Лийнъярв 1401 Лималаго 1167 Лимила 1241 Мыртсука 1012 Орава 1304 Партси Кыртсиярв 1128 Пикриярв 1078 Пикриярв 1078 Пикриярв 1078 Пикриярв 1078 Пикриярв 1078

Минералы в пелогене профундали озер Эстонии

Рентгендифрактометрическое исследование...

139

1 10	Аморфное вещество Пирит (следы)	Гетит 15% Гетит (следы) Пирит (следы) Аморфное вещество Гематит (следы) Гетит 10% Кордиерит 5%
9		Следы 5
8	Следы 9 6 12 12	10 10 10
2	10 6 12 12 12 14 12 12	5 Следы 17 30 7 5 21 20 20
6 1	166 16 16 16 16 16 16 16 16 16 10 10 10 10 10 10 10 10 10 10 10 10 10	2 5 10 10 11 11 10 10 10 10 10 10 10 10 10
5	5 6 15 10 12 12	Следы
4	90 23 23 23 23 23 23 23 23 23 23 23 23 23	9 ⁰ 5
3	$\begin{array}{c} 570\\ 53\\ 53\\ 53\\ 53\\ 53\\ 53\\ 53\\ 53\\ 53\\ 53$	88 60 60 60 60 60 60 60 60 60 60
2	6,7 33,00 33,00 33,00 33,00 33,00 33,00 33,00 33,00 33,00 33,00 33,00 33,00 33,00 33,00 34,00 35,00 35,00 35,00 35,00 35,00 35,00 35,00 35,00 35,00 35,00 35,0000000000	4,000,000,000,000,000,000,000,000,000,0
	Пюхаярв 1053 Пяйдла Ахвеньярв 1022 Пяйдла Кыверьярв 1015 Пяйдла Курьярв 1021 Рухиярв 993 Рыуге Суурьярв 1403 Разтсма 276 Садъярв 653 Садъярв 653 Сикути 1113 Сойтсъярв 653 Суур Сааръярв 1345 Толлари 1336 Тсолго Мустьярв 1280 Эхиярв 1360	Дисэвтрофные Алакону 1354 Вескиярв 284 Койги 715 Консу 279 Куртна Ныммеярв 274 Кууля 1169 Лээваги 1294 Мяхкли 1338 Солда 1303 Тиху 513 Тондре 1148 Убаярв 1375 Уссайа-алуне 1170 Уссайа-алуне 1170 Уссайа-алуне 1170 Хссейа-алуне 1170 Хссейа-алуне 1170 Ярвекола 622 Ярвекола 622 Ярвекола 622 Ярвекола 622 Ярвекота 401 Дистрофные Виросте 1123 Вяйке Сааръярв 1301

Айни Линдпере, Калью Утсал

140

a 102 a 101 a	6 53 10 50 53 10 50 53 10 50 50 50 50 50 50 50 50 50 50 50 50 50	20 113 10 10	<u>~</u> +	
Banasana anis sorigne anos deseco				0001
82 93 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	00 200 200 200 200 200 200 200 200 200	864 864 864 864 864 864 864 864 864 864	+85	Следы
1,5 6,0 8,5 12 1,5 1,5	24,9 24,9 24,5 24,5 26,5 5 0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	15,0 15,0 15,5 29,6 7,3	10,0 3,9	0,3 7,0
Мээльва 1136 Нохипалу Мустьярв 1298 Пикамяэ 1129 Сааръярв 1263 Тиклазе 1457 Хольванди Кивиярв 1120 Озерко болота Эндла	Олиготрофные Ахнеярв 262 Вийтна Линаярв 38 Вийтна Пиккъярв 39 Вяйке Палкна 1517-1 Карсна 1275 Корркюла Вальгеярв 1180 Нохипалу Вальгеярв 1297	Пазуярь 350 Пийганди 1084 Пуллиярв 1552 Роони 1160 Тсолго Пиккъярв 1282 Удсу 1177 Хино 1555	Семидистрофные Вийтина 1415 Вяйкъярв 1409 Ульясте 141	Алкалитрофные Рийсипере Вальгеярв 290 Энту Синиярв 436 Энту Вальгъярв 437

		Аморфное веще Аморфное веще Пирит 1%, сил	Аморфное веще
20		15	15
8 5 12	ល ល	10 8	
ເດັບ ເຊັ	10 20 19 26 10	20 12 5	Следы

		Аморфное вещество Аморфное вещество Пирит 1%, сидерит 2%	Аморфное вещество
20		15	15
12	വ വ	10 8	
19	20 20 20 26 10	20 12 5	Следы
2022 	9 23 23 9 9	20 113 113 20	<u></u>
95 95 95	100 68 88 80 60 80 80 80 80 80 80 80 80 80 80 80 80 80	80 100 100 100 100 100 100 100 100 100 1	+857
5,5 12 1,5	- 0,0,24,4,0 - 0,0,0 - 0,0,0 - 0,0,0 - 0,0,0 - 0,0,0 - 0,0,0 - 0,0,0 - 0,0,0 - 0,0 -	15,0 15,0 15,5 29,6 7,3	10,0 11,0 3,9
0	80	SETONPHE.	

Рентгендифрактометрическое исследование...

Характеристика минералов

В результате рентгендифрактометрического анализа в верхнем слое донных отложений профундали озер Эстонии идентифицировали 11 минералов: кварц, кальцит, доломит, полевой шпат, гидрослюду, хлорит, гетит, пирит, гематит, сидерит и кордиерит (таблица).

Самый распространенный минерал — кварц (рис. 1). Он установлен почти на всех дифрактограммах, за исключением дифрактограмм двух алкалитрофных озер. Содержание его в пелогене различное, достигает иногда 100%. Кварц составляет основу минеральной части озерных осадков, не содержащих кальцит (см. дифрактограмму пелогена озера Койги, рис. 2). Бо́льшая часть кварца в исследуемых водоемах — терригенная. В озерных осадках нельзя исключить наличие автохтонного кварца. Небольшое количество его установлено в некоторых высших водяных растениях (Cowgill, 1975). Автохтонного аморфного кремния в донных отложениях найдено иногда обильно, в некоторых случаях до 99% (Россолимо, 1975). По нашим данным, которые опираются на более внимательный анализ относительных интенсивностей рефлексов кварца, в некоторых образцах пелогена можно предполагать присутствие идиоморфных кристалликов кварца, которые трудно считать терригенными.

По встречаемости за кварцем следуют полевые шпаты (в 70 случаях). Количественное содержание их невысокое. В минералах донных отложений они составляют в большинстве случаев около 15%. В пробах, отобранных из озер Вийтна Линаярв, Елиствере, Карсна и Пийганди, содержание полевых шпатов несколько выше, но не больше 37%.

Из глинистых минералов в наибольшем количестве обнаружены **гид**рослюды (в 57 озерах) и хлориты (в 40 озерах). В большинстве случаев на долю гидрослюды падает меньше 22%. В озерах Карула Ребазеярв н Солда содержание их составляет 30%, в озере Кооркюла Вальгъярв — 26%. Гидрослюды всегда встречаются с полевыми шпатами, которые в свою очередь сопровождают хлориты. Содержание хлоритов невысокое, меньше 16%. На дифрактограмме пелогена озера Солда (см. рис. 3) видны характерные рефлексы гидрослюды (с *d* 10,10; 4,46; 3,33; 2,558 н 1,501 Å), хлорита, возможно, вместе со следами каолинита (7,09 и 3,55 Å), кварца (4,26; 3,33; 1,815; 1,539 и 1,372 Å) и полевого шпата (3,24 и 3,19 Å). Автохтонным минералом в этом образце является пирит

(2,703 и 1,630 Å). По высоте линии фона на дифрактограмме можно предсказать, что в образце много аморфных органических соединений. Зольность образца 55%.

В 24 образцах выделен **доломит**, который встречается в небольшом количестве. В большинстве случаев он составляет менее 10% кристаллических соединений донных отложений. Самое богатое доломитом (25%)

Рис. 1. Встречаемость минералов в пелогене профундали озер Эстонии: Кв — кварц, Пш полевые шпаты, ГС — гидрослюды, Х — хлорит, Дол — доломит, Ка — кальцит, Пр прочие.

озеро Лийнъярв. На дифрактограмме пелогена этого озера (рис. 4), кроме сильных рефлексов кварца, видны характерные пики доломита с d 2,888, 2,405, 2,186, 2,007 и 1,783 Å. Кроме доломита и кварца в пелогене этого озера обнаружен кальцит. Его рефлексы с d 3,84, 3,03, 2,489, 2,091, 1,906 и 1,870 Å хорошо видны на дифрактограмме. Так же ясно проявляются рефлексы, характерные для полевого шпата, гидрослюды и хлорита. По линии фона на дифрактограмме можно предсказать, что

аморфной органики в образце незначительное количество (зольность образца 83%).

По происхождению все перечисленные глинистые и неглинистые минералы терригенные, что подтверждают и исследования В. М. Левченко (1966, 1975). Возможности для седиментационного образования доломита в гидрокарбонатно-кальциевой воде отсутствуют.

Редко (см. таблицу) и в следах в донных отложениях установлены пирит, гетит, гематит, сидерит (автохтонные) и кордиерит (последний

определен только по одному рефлексу с d 8,49 Å). В донных отложениях 36 озер обнаружен кальцит. Встречается он чаще всего там, где зольность донных отложений выше 60%. Содержание его различно и варьирует от нескольких до ста процентов, в основном он автохтонный. Так, дифрактограмма пелогена озера Энту Синиярв (рис. 5) показывает, что автохтонный кальцит в структурном смысле хорошо выкристаллизовывается. Низкий фон и едва заметный диффузный максимум в пределах Θ 12—14° говорят о том, что в образце присутствует мало органического вещества (зольность образца 88%).

Пелоген озера Тиху характеризуется большим содержанием органического вещества (зольность образца 12%). На дифрактограмме (рис. 6) видны слабый рефлекс кварца с *d* 3,34 Å и заметное диффузное отражение с максимумом у *d* 4,13 Å.

Как следует из сказанного, минералогический состав донных отложений озер Эстонии разнообразен. Однако озера с донными отложениями, содержащими все 11 рентгенографически идентифицированных минералов, не встречались. Наибольшее количество минералов (6) имели озера Иекси, Лийнъярв (рис. 4), Ныуни, Карула Пиккъярв, Киккаярв, Пилкузе, Пюхаярв, Рыуге Сууръярв и Эхиярв.

На основе найденных минералов исследованные озера можно разделить на две группы. У одних в профундали аккумуляция кальцита не происходит, у других — происходит. К первой группе относятся все олиготрофные, дистрофные, семидистрофные, некоторые дисэвтрофные и эвтрофные озера, всего 56 из обследованных. Преобладающим минералом в донных отложениях этих водоемов является кварц (45—98% всего минералогического состава). Встречаются водоемы, кристаллическая фаза осадков которых практически полностью состоит из кварца. В данном случае их четыре — три олиготрофных (Пахиярв, Пуллиярв и Ахнеярв) и одно дисэвтрофное (Тиху). Наряду с кварцем в донных отложениях этих озер часто и в большем количестве встречаются полевые шпаты, хлориты и гидрослюды.

Ко второй группе относятся 36 озер (все алкалитрофные, большинство эвтрофных и 2 дисэвтрофных). Практически полностью из кальцита состоит кристаллическая фаза донных отложений всех исследованных алкалитрофных озер (Рийсипере Вальгеярв и озера Энту). Благоприятные условия для накопления кальцита (80% и больше) в профундали установлены и в следующих озерах: Вийсъяагу, Висси, Каарна, Кээри, Кайавере, Каарепере Пиккъярв, Ныо Каруярв, Ныо Вяйке-Каруярв, Просса, Сойтсъярв, Пяйдла Сууръярв, Пяйдла Кыверъярв. Саадъярв и Ярвекюла.

Озера, аккумулирующие кальцит, лежат на водосборах, ландшафт которых богат карбонатными породами. С поверхностными и грунтовыми водами гидрокарбонат кальция поступает в водоемы. Однако высокое содержание ионов гидрокарбоната и кальция недостаточно для накопления кальцита. Образование, осаждение, стабилизация в твердой фазе или растворение его регулируются карбонатным равновеснем, на которое влияет ряд внешних факторов. Механизм образования хемогенного кальцита в водоемах Эстонии наиболее подробно рассмотрен на примерах озер Выртсъярв (Стараст, 1970, 1973) и Саадъярв (Lindpere, Starast, 1977). В этой группе озер между кварцем и кальцитом наблюдается отрицательная корреляция: с уменьшением содержания кальцита повышается содержание кварца, достигая в кристаллической фазе пелогена иногда 85%. В аккумулирующих кальцит озерах часто (в 24 случаях) встречается и доломит, а кроме того, также полевые шпаты, гидрослюды и хлориты. Накопление автохтонного кальцита обусловливает относительную бедность донных отложений терригенным материалом.

ЛИТЕРАТУРА

- Дубовик В. И., Четверикова О. П. Рентгенструктурные исследования небитуминозной части рассеянного органического вещества осадочных пород. — Докл.
- АН СССР, 1974, т. 219, № 2, с. 454—457. Куприн П. Н., Сорокин В. М. Нерастворимая часть органического вещества осадков Черного моря. Литология и полезные ископаемые, 1976, № 5, с. 35— 48.
- Левченко В. М. Образование доломита в природных условиях. Вопросы вод-ного хозяйства, 1966, т. 3, № 2, с. 3—7. Левченко В. М., Перова Н. И., Лазарев В. С. Об условиях образования
- доломита. Гидрохим. материалы, 1975, т. 62, с. 107—109. Лы окене Э., Утсал К. О минеральном составе и возрасте голоценовых пресно-водных карбонатных пород в Южной Эстонии. Уч. зап. ТГУ. Тр. по геол., 1971, т. 286, № 6, с. 164—194.
- Россолимо Л. Л. Озерное накопление кремния. В кн.: Круговорот вещества и энергии в озерных водоемах. Новосибирск, 1975. Симм X. Гидрохимическая типизация малых озер Эстонии. — Изв. АН ЭССР. Биол.,
- Симм А. Гидрохимическая типизация малых озер Эстонии. Різв. Ан ЭССР. Биол., 1973, т. 20, № 1, с. 58—67. Стараст Х. А. О карбонатном равновесни в озере Выртсъярв. Режим озера. Тр. Всесоюзного симпозиума, 1970, т. 1, с. 118—126. Стараст Х. А. Равновесие двуокиси углерода воды озера Выртсъярв с атмосфе-рой. В кн.: Лимнология Северо-Запада СССР, 1973, т. 3, с. 110—113.

- рой. В кн.: Лимнология Северо-Запада СССР, 1973, т. 3, с. 110—113.
 Утсал К. О технике и методике исследования глинистых минералов рентгеновскими методами. Уч. зап. ТГУ. Тр. по геол., 1971, т. 286, № 6, с. 3—51.
 Утсал К. Р., Утсал В. И., Лы окене Э. А. Рентгендифрактометрический метод исследования количества аморфной органики и соединения железа в современных озерных и болотных отложениях. Рентгенография минерального сырья. Тез. докл. VII Всесоюзн. совещ., т. 2, 1977, с. 36—37.
 'C o w g i 11, U. M. Mineralogical composition of submerged aquatic macrophytes from Connecticut. Verh. Internat. Verein. Limnol., 1975, v. 19, p. 2749—2757.
 K a s k, I. Eesti NSV järvede nimestik. Tln., 1964.

Lindpere, A., Starast, H. Saadjärve pindmise settekihi keemiline ja mineraloo-giline koostis. — ENSV TA Toim. Biol., 1977, k. 26, Nr. 3, lk. 225—232. Mäemets, A. On Estonian lake types and main trends of their evolution. — In: Estonian wetlands and their life. Tln., 1974, p. 29—62.

- S i m m, H. Eesti pinnavete hüdrokeemia. Tln., 1975.

Институт зоологии и ботаники Академии наук Эстонской ССР Поступила в редакцию 19/I 1978

Aini LINDPERE, Kalju UTSAL

EESTI JÄRVEDE PROFUNDAALI PELOGEENI RÖNTGENDIFRAKTO-MEETRILINE UURIMINE

Aastail 1971—1976 92 Eesti järvest kogutud proovide röntgendifraktomeetrilise analüüsi andmeil sisaldab järvede profundaali pelogeen 11 mineraali. Kaltsiiti mitteakumuleerivates järvedes leidub kõige rohkem kvartsi, järgnevad põldpaod, savimineraalidest hüdrovilgud ja kloriit. Samu mineraale (paljudel juhtudel lisandub neile dolomiit) on ka kaltsiiti akumuleerivates järvedes, kuid nende sisaldus sõltub kaltsiidi hulgast: mida rohkem on kaltsiiti, seda vähem kvartsi ja teisi terrigeenseid mineraale. Kõige harvemini ja vähemal määral leidub götiiti, püriiti, hematiiti, sideriiti ja kordieriiti.

Aini LINDPERE, Kalju UTSAL

X-RAY DIFFRACTION OF SURFACE SEDIMENTS IN ESTONIAN LAKES

Eleven minerals were determined by X-ray diffraction in surface sediments of 92 Estonian lakes.

Quartz is the major mineral in the surface sediments of the lakes that do not accumulate calcite. Quartz was followed by feldspar and clay minerals — plagioclase and chlorite. The same minerals, often accompanied by dolomite are also found in the lakes that accumulate calcite. The more calcite in the sediments, the smaller the amount of quartz and other terrigenous minerals. The frequency of occurrence and amount of other minerals, such as goethite, pyrite, hematite, siderite and cordierite are small.