ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 23 ВИОЛОГИЯ. 1974, № 2

https://doi.org/10.3176/biol.1974.2.01

УДК <u>576.858.8</u> 577.1 547.96

Ulrich HÖDREJÄRV, Vello PIHELGAS

KARTULI-N-VIIRUSE MÕNINGAID FÜÜSIKALIS-KEEMILISI OMADUSI

1960. aastal isoleeriti ENSV TA Eksperimentaalbioloogia Instituudis viirus, mis Jõgeva Sordiaretusjaamas oli kartulil tekitanud mosaiiki ja kimarlehisust. Seda viirust hakati nimetama kartuli-N-viiruseks (KNV) (Нурмисте, 1960). Hilisemate uurimistööde tulemusena määrati kindlaks mitmed selle viiruse füüsikalis-keemilised (Нурмисте, 1962; Хёдреярв и др., 1968; Hödrejärv jt., 1971) ja infektsioonilised (Agur, 1967, 1968) omadused. See, samuti elektronmikroskoopiliste uurimistööde tulemused, võimaldasid oletada, et N-viiruse näol on meil tegemist looduses laialt levinud kurgimosaiigiviiruse (KuMV) teatud vormiga (Agur, 1966, 1968; Xёдреярв и др., 1968, 1971).

Ét saada täiendavaid andmeid, mis seda oletust toetaksid või eitaksid, määrasime KNV fosforisisalduse, nukleiinhappe tüübi ja selle nukleotiidse koostise, uurisime virioonide elektroforeetilist liikuvust erinevate pH väärtuste puhul ning sedimentatsioonilisi omadusi analüütilise ultratsentrifuugimise abil. Tulemusi võrdlesime KuMV ja mõningate teiste sfääriliste viiruste kohta olemasolevate andmetega.

Materjal ja metoodika

Uurimiseks kasutati KNV mutantset vormi N_R (KN_RV) (Agur, 1966, 1967). Viiruspreparaadid valmistati modifitseeritud Scott-Takanami-Tomaru (Scott, 1963; Takanami, Tomaru, 1969) KuMV eraldamise meetodil (Хёдреярв, Олсперт, 1973).

KN_RV nukleiinhappe tüübi kindlakstegemiseks kasutati värvusreaktsioone desoksüriboosile ja riboosile (Дише, 1957). Nukleiinhape eraldati KN_RV puhaspreparaatidest fenooli abil (Gierer, Schramm, 1956).

 KN_RV nukleotiidne koostis määrati standardmeetodil (Smith, 1955) ja fosforisisaldus KN_RV puhaspreparaatides Alleni meetodil (Allen, 1940).

 KN_RV elektroforeetilise liikuvuse määramiseks kasutati 0,1 ioonjõuga puhverlahuseid (Miller, Golder, 1950). Liikumiskiiruse määramine toimus seadmes «Elektrophoresegerät 35» (Zeiss, Jena) temperatuuril 4 °C. Viiruspreparaatide absorptsiooniindeksid määrati lähtudes 0,005 M boraatpuhvris (pH 9,0) olevate virioonide optilisest tihedusest 260 nm juures ja samade preparaatide kuivkaalust (kuivatatud 90 °C juures konstantse kaaluni).

Virioonide käitumise uurimiseks analüütilises ultratsentrifuugis («Spinco», mudel E) kasutati 0,005 M boraatpuhvris (pH 9,0) olevaid KN_RV puhaspreparaate, mida lahjendati sama puhvriga vajaliku kontsentratsioonini. Lahuseid analüüsiti rootoris An-D, kasutades Schliereni-optikat. Katsed toimusid temperatuuril 20 °C, kusjuures temperatuuri stabiliseerimiseks kasutati «Spinco» elektronsüsteemi. Sedimentatsioonikoefitsient määrati standardküvettides (optilise tee pikkus 12 mm) üldkasutatava metoodika abil (Schachman, 1957) ja arvutati vähimruutude meetodil. Kauguste määramiseks fotoplaatidel kasutati mõõtmikroskoopi MMP-12.

Difusioonikoefitsient määrati «Spincos», kihtides spetsiaalses kahesektorilises kunstliku piiriga kapillaartüüpi küvetis viiruslahuse peale puhvrit. Saadud kõverad kanti fotodelt fotosuurendaja abil millimeetripaberile, pindalad määrati kindlaks ruutude loendamise teel.

Fotode alusel arvutatud sedimentatsioonikoefitsiendid kohandati standardtingimustele (vesi 20 °C) ja ekstrapoleeriti nullkontsentratsioonile. Ka difusioonikoefitsiendid korrigeeriti, lähtudes temperatuurist ja veest.

Tulemused ja arutelu

Selgus, et viiruspreparaatide keskmiseks absorptsiooniindeksiks 260 nm juures on 4,9 cm²/mg. Arvutamisel ei võetud arvesse 0,005 M boraatpuhvris olemasolevate soolade hulka, mis eelduse kohaselt tulemust praktiliselt ei mõjuta. Samuti ei korrigeeritud arvutamiseks kasutatud optiliste tiheduste väärtusi valguse hajumise suhtes. Saadud absorptsiooniindeksi väärtus on lähedane KuMV vormide Q ja Y kohta kirjanduses (Francki jt., 1966; Kaper jt., 1965) leiduvatele andmetele (5,0 cm²/mg).

Pärast viiruslikule nukleiinhappele difenüülamiini lisamist jäi lahus värvituks. Järelikult puudub selles DNA. Ortsiini mõjul muutus aga lahus roheliseks. Sellega on tõestatud, et KN_RV näol on meil tegemist RNA-viirusega.

Nagu nähtub tabelist 1, sarnaneb KN_RV RNA nukleotiidne koostis rohkem KuMV-Q RNA nukleotiidse koostisega. Tuleb aga märkida, et erinevused RNA nukleotiidses koostises on KN_RV ja KuMV-Q vahel väiksemad kui KuMV-Q ja KuMV-Y vahel.

Tabel 1

KN_RV ja KuMV mõningate vormide RNA nukleotiidsed koostised

Nukleotiid	KN _P V	KuMV-Q*	KuMV-Y**	
	ACTIN	Actuary de		
AMP	22,2	22,4	24,3	
GMP	26,1	24,7	23,4	
CMP	22,3	22,8	23,2	
UMP	29,4	30,1	29,0	

KN_RV elektroforeetiliste liikuvuste kõver, olenevalt kasutatud lahuste pH-st.

* Francki jt., 1966.

** Kaper jt., 1965.

Kuue erineva KN_RV-preparaadi keskmine fosforisisaldus oli 1,74%. Võttes aluseks KN_RV RNA nukleotiidse koostise, leiti, et virioonid sisaldavad keskmiselt 18,0% RNA-d.

Nagu nähtub tabelist 2, on KN_RV RNA-sisaldus samasugune nagu teistelgi KuMV vormidel. Tänu KuMV vormide erinevale nukleotiidsele koostisele, on nende fosforisisaldused erinevad.

KN _R V	ja	mõnede	teadaolevate	KuMV	vormide	fosfori-	ja
	000		RNA-sisa	ldus			

Tabel 2

Viirus	P-sisaldus, %	RNA-sisaldus, %	Artiklid
KuMV-Y	1,77-1.80	18,5	Kaper it., 1965
KuMV-Q	NORE MELSA R	18,0	Francki jt., 1966
KuMV-S	1,64	18,0	Van Regenmortel, 1967
KNRV	1,74	18,0	ku.

Joonisel on esitatud graafiliselt KN_RV liikuvused olenevalt lahuse pH-st. Ilmneb, et KN_RV isoelektriline täpp on pH 5,8 juures. See erineb kirjanduses (van Regenmortel, 1967) avaldatud KuMV S-vormi vastavast väärtusest (pH 4,7). Küllalt suuri erinevusi ühe viiruse erinevate vormide isoelektriliste täppide väärtustes on täheldatud ka mõnede teiste viiruste puhul (Wolfgang, 1967).

 KN_RV sedimentatsioonikoefitsient leiti 0,005 M boraatpuhvris (pH 9,0) pöörlemiskiirusel 26 000 p/min., kusjuures kontsentratsioonid olid 1—10 mg/ml. Standardtingimustele viidud ja nullkontsentratsioonile ekstrapoleeritud sedimentatsioonikoefitsient $S_{20,w}=92,6 S$.

Mõningate sfääriliste viiruste põhilised sedimentatsioonilised omadused on esitatud tabelis 3. Nagu sellest nähtub, ühtub tulemus 92,6*S* kurgimosaiigiviiruse Y-vormi kohta olemasolevate andmetega. See on võrreldav ka teiste kurgimosaiigiviiruse vormide sedimentatsioonikoefitsientide väärtustega.

Võrreldes N-viiruse infektsioonilisi omadusi teiste viiruste samade omadustega ja arvestades elektronmikroskoopiliste uurimiste tulemusi, jõudis M. Agur järeldusele, et N-viirus sarnaneb kõige enam kurgimosaiigi- ja tubakaringlaiksuseviirustega (Agur, 1968). Nagu nähtub tabelist 3, on tubakaringlaiksuseviiruse sedimentatsioonikoefitsient tunduvalt suurem kui N-viirusel. See välistab nende viiruste identsuse võimaluse.

Tabel 3

Viirus	$S^{0}_{20,w} \cdot 10^{-13}$ sek.	$D_{20,w} \cdot 10^{-7} \text{ cm}^2/\text{sek}.$	M · 106	Artiklid
Stepin d	in of polate virus	N was found to built Olds one built Auger	700-702-6703	1. anutakenutiv 1.74 an
KNRV	92.6	1.22	5.6	utdoes formelilisestatur
KuMV-Y	92	of other Hi - A. seli965.	4.9-5.8	Kaper it., 1965
KuMV-Q	98.6	1.20	5.8	Francki it., 1966
KuMV	99.5	1.2	5-5.15	Dupont it., 1968
KuMV-S	98.5	1.23	6.3-6.73	Van Regenmortel, 1967
Tubakaring- laiksuse-	o 12 for use in el	s. 9 : 241-270. 0. Buffers of pH 2 f	dv. Virus Re	Miller G. L. Golde
viirus	128	420-422-annual	Biophysic 29	Фрепкель-Конрат, 1972

Mõningate sfääriliste viiruste sedimentatsioonilisi omadusi

N-viiruse difusioonikoefitsiendi määramisel oli temperatuur 20 °C ja rootori kiirus 3600 p/min. Difusiooni kestuseks oli kaks tundi. Arvutati Schachmani järgi (Schachman, 1957), kasutades pindala ja kõrguse suhte meetodit. Et vältida võimaliku mittehomogeense materjali mõju difusioonikoefitsiendi suurusele, leiti millimeetripaberile suurendatud tippude poolpindalad (madalmolekulaarses osas). Üldpindala saamiseks korrutati tulemus kahega (Markham, 1962). Standardtingimustele vastavalt ümberarvutatud difusioonikoefitsient ($D_{20,w}$) viiruse kontsentratsiooni 6 g/l puhul

Fig. 6. Pustulina ochracea, spore, SEM, note the wrinkled surface. Denmark, Sjaelland: Hareskoven, 25. 6. 1971, leg. H. Dissing (C). × 250.

Fig. 7. Disciotis venosa, spores; in cotton blue, note the staining areas near the poles. \times 2000.

Fig. 8. Pseudopithyella magnispora. a — young spore with gelatinous cover, b — ascus stained in congo red, compare with Fig. 11, c — section of fruit body. a, $b \times 2000$, $c \times 100$.

Tabel 2

KN _R V	ja	mõnede	teadaolevate	KuMV	vormide	fosfori-	ja
			RNA-sisa	Idus			

Viirus	P-sisaldus, %	RNA-sisaldus, %	Artiklid
KuMV-Y	1,77—1,80	18,5	Kaper jt., 1965
KuMV-Q KuMV-S	1,64	18,0 18,0	Francki jt., 1966 Van Regenmortel, 1967
KNRV	1,74	18,0	ilku.

Joonisel on esitatud graafiliselt KN_RV liikuvused olenevalt lahuse pH-st. Ilmneb, et KN_RV isoelektriline täpp on pH 5,8 juures. See erineb kirjanduses (van Regenmortel, 1967) avaldatud KuMV S-vormi vastavast väärtusest (pH 4,7). Küllalt suuri erinevusi ühe viiruse erinevate vormide isoelektriliste täppide väärtustes on täheldatud ka mõnede teiste viiruste puhul (Wolfgang, 1967).

 KN_RV sedimentatsioonikoefitsient leiti 0,005 M boraatpuhvris (pH 9,0) pöörlemiskiirusel 26 000 p/min., kusjuures kontsentratsioonid olid 1–10 mg/ml. Standardtingimustele viidud ja nullkontsentratsioonile ekstrapoleeritud sedimentatsioonikoefitsient $S_{20,w}=92,6 S$.

Mõningate sfääriliste viiruste põhilised sedimentatsioonilised omadused on esitatud tabelis 3. Nagu sellest nähtub, ühtub tulemus 92,6*S* kurgimosaiigiviiruse Y-vormi kohta olemasolevate andmetega. See on võrreldav ka teiste kurgimosaiigiviiruse vormide sedimentatsioonikoefitsientide väärtustega.

Võrreldes N-viiruse infektsioonilisi omadusi teiste viiruste samade omadustega ja arvestades elektronmikroskoopiliste uurimiste tulemusi, jõudis M. Agur järeldusele, et N-viirus sarnaneb kõige enam kurgimosaiigi- ja tubakaringlaiksuseviirustega (Agur, 1968). Nagu nähtub tabelist 3, on tubakaringlaiksuseviiruse sedimentatsioonikoefitsient tunduvalt suurem kui N-viirusel. See välistab nende viiruste identsuse võimaluse.

Tabel 3

Viirus	$S_{20,w}^0 \cdot 10^{-13}$ sek.	$D_{20,w} \cdot 10^{-7} \mathrm{cm}^2/\mathrm{sek}.$	M · 106	Artiklid
antes classes	A Indiak . ak.	Petri M. Lingella	Asspran	Hodraphy IN Tan
KNRV	92,6	1,22	5,6	auto isse tud <u>us</u> ot en status
KuMV-Y	92	COLUMN	4,9-5,8	Kaper jt., 1965
KuMV-Q	98.6	1.20	5.8	Francki jt., 1966
KuMV	99.5	1.2	5-5.15	Dupont it., 1968
KuMV-S	98.5	1.23	6.3-6.73	Van Regenmortel, 1967
Tubakaring- laiksuse-	o 12 for use in el	s 9 241-270 0. Builders of pH 2 1	dv. Virus Re r R. H., 196	A mention funding
viirus	128	420-422-	Elophy 2 2	Фрепкель-Конрат, 1972

Mõningate sfääriliste viiruste sedimentatsioonilisi omadusi

N-viiruse difusioonikoefitsiendi määramisel oli temperatuur 20 °C ja rootori kiirus 3600 p/min. Difusiooni kestuseks oli kaks tundi. Arvutati Schachmani järgi (Schachman, 1957), kasutades pindala ja kõrguse suhte meetodit. Et vältida võimaliku mittehomogeense materjali mõju difusioonikoefitsiendi suurusele, leiti millimeetripaberile suurendatud tippude poolpindalad (madalmolekulaarses osas). Üldpindala saamiseks korrutati tulemus kahega (Markham, 1962). Standardtingimustele vastavalt ümberarvutatud difusioonikoefitsient ($D_{20,w}$) viiruse kontsentratsiooni 6 g/l puhul

101

on 1,22.10⁻⁷ cm²/sek. Nagu nähtub tabelist 3, ühtib see tulemus kurgimosaiigiviiruste kohta avaldatud andmetega.

KN_RV molekulkaal arvutati Svedbergi võrrandist $M = \frac{SRT}{D(1 - \overline{v_Q})}$, kus S on sedimentatsioonikoefitsient, R — gaasikonstant, T — absoluutne temperatuur, D — difusioonikoefitsient, v — eriruumala ja ϱ — lahusti tihedus. Arvutustes kasutati $S_{20,w}$ väärtust kontsentratsiooni 6 g/l korral: $S_{20,w} =$ =84 S. v=0,70 ml/g, kui v-d võtta RNA ja valgu jaoks vastavalt 0,55 ja 0,74 (Markham, 1962), arvestades, et viirus sisaldab 18% RNA-d ja 82% valku.

Seega on KN_RV molekulkaal (M) ligikaudu $5.6 \cdot 10^6$ daltonit. Tabelist 3 uäeme, et saadud tulemus ühtib kurgimosaiigiviiruste molekulkaaludega. Prantslased Dupont it. on saanud monevorra väiksemad kurgimosaiigiviiruse molekulkaalud (5-5,15.106), Y- ja Q-vormide molekulkaalud ühtivad meie mõõtmistulemustega, viiruse S-vormi väärtused aga on mõnevõrra suuremad kui N-viiruse omad.

Kokku võttes tuleb sedastada, et KN_RV füüsikalis-keemiliste omaduste (RNA- ja fosforisisaldus, nukleotiidne koostis, sedimentatsiooni- ja difusioonikoefitsiendid, molekulkaal) määramine kinnitas, et KN_RV on üks KuMV vormidest. Ta sarnaneb eelkõige vormidega Q ja Y. RNA-sisaldus, nukleotiidne koostis ja soolade mõju (Хёдреярв, Олсперт, 1973) võimaldavad väita, et KuMV uuritud vormidest on KN_RV-le kõige lähedasem Q-vorm.

KIRJANDUS

- Agur M., 1966. Ühest nn. N-viiruse puhul täheldatud mutatsiooninähtusest. ENSV TA Toimet., Biol. 15 : 524—529. A g u r M., 1967. Nn. N-viiruse infektsioonilistest omadustest. ENSV TA Toimet., Biol. 16 :
- 115-127.
- Agur M., 1968. Andmeid kartuli nn. N-viiruse ja kurgimosaiigiviiruse identsuse kohta. ENSV TA Toimet., Biol. 17: 288-300.

Allen R. J. L., 1940. The estimation of phosphorus. Biochem. J. 34: 858-865.

Dupont G., Horn P., Yot-Danthy D., Bove J. M., 1968. Détermination de la masse moléculaire du virus de la mosaique du concombre. Compt. rendus de l'Académie des Sci. **D 267** (11) : 1013—1015. Francki R. I. B., Randles J. W., Chambers T. C., Wilson S. B., 1966. Some

properties of purified cucumber mosaic virus (Q strain). Virology 28 : 729-741.

Gierer A., Schramm G., 1956. Infectivity of ribonucleic acid from tobacco mosaic virus. Nature 177: 702-703. Hödrejärv U., Tarassova K., Olspert K., 1971. Nn. kartuli-N-viiruse elektro-foreetilisest uurimisest. ENSV TA Toimet., Biol. 20: 79-83.

Kaper J. M., Diener T. O., Scott H. A., 1965. Some physical and chemical properties of cucumber mosaic virus (strain Y) and of its isolated ribonucleic acid. Virology 27: 54-72.
Markham R., 1962. The analytical ultracentrifuge as a tool for the investigation of

Main Re, 1952. Adv. Virus Res. 9: 241-270.
Miller G. L., Golder R. H., 1950. Buffers of pH 2 to 12 for use in electrophoresis. Arch. Biochem. Biophys. 29: 420-423.
van Regenmortel M. H. V., 1967. Biochemical and biophysical properties of cucumber mosaic virus. Virology 31: 391-396.

Schachman H. K., 1957. Ultracentrifugation, diffusion and viscometry. In: Methods in enzymology IV : 32-103.

Scott H. A., 1963. Purification of cucumber mosaic virus. Virology 20: 103-106.

S mith J. D., 1955. The electrophoretic separation of nucleic acid components. In: The nucleic acids I : 267-284. Takanami Y., Tomaru K., 1969. Effect of EDTA on cucumber mosaic virus and its

application in purification. Virology 37 : 293—295. Wolfgang H., 1967. Physikalische und chemische Eigenschaften pflanzenpathogener

Viren. Chemische Eigenschaften. Pflanzliche Virologie 1 : 179-195.

Дише Ц., 1957. Цветные реакции на компоненты нуклеиновых кислот. В кн.: Нук-

ленновые кислоты. М. : 425—442. Нурмисте Б. Х., 1960. Некоторые данные о новом вирусе, изолированном из вы-рожденных сеянцев картофеля. Тр. Ин-та экспериментальной биологии АН ЭССР. I: 9-46. Нурмисте Б. Х., 1962. Дополнительные данные о так называемом вирусе N. Тр.

Ин-та экспериментальной биологии АН ЭССР. II : 108-127.

Френкель-Конрат Х., 1972. Химия и биохимия вирусов. М. : 156.

Хёдреярв У., Олсперт К., Тарасова К., 1968. Некоторые данные о так наз. вирусе N картофеля. Изв. АН ЭССР. Биол. 17 (4) : 385—387. Хёдреярв У., Олсперт К., 1973. Некоторые данные о физико-химических свой-ствах вируса N картофеля. VI Всесоюзное совещание по вирусным болезням растений. Доклады. Киев (в печати).

Eesti NSV Teaduste Akadeemia Eksperimentaalbioloogia Instituut

Toimetusse saabunud 11. VII 1973

Улрих ХЕДРЕЯРВ, Велло ПИХЕЛГАС

НЕКОТОРЫЕ ФИЗИКО-ХИМИЧЕСКИЕ СВОИСТВА ВИРУСА N КАРТОФЕЛЯ

Резюме

Штамм NR вируса N картофеля является РНК-вирусом, содержащим 1,74% фосфора и 18% РНК. Нуклеотидный состав РНК (в молярных процентах) был следующим: 22,2% АМФ, 26,1% ГМФ, 22,3% ЦМФ и 29,4% УМФ. Из данных электрофоретической подвижности при разных рН была определена изоэлектрическая точка вируса, которая равнялась 5,8. Молекулярный вес вируса 5,6·10⁶ был рассчитан, исходя из значений константы седиментации $S_{20,w}^{9}=92,6~S$ и коэффициента диффузии $1,22\cdot 10^{-7}~cm^{2}/ce\kappa$.

Полученные данные подтверждают предположение о том, что вирус N является одним из штаммов вируса мозанки огурца.

Институт экспериментальной биологии Академии наук Эстонской ССР

Поступила в редакцию 11/VII 1973

Ulrich HÖDREJÄRV, Vello PIHELGAS

SOME PHYSICO-CHEMICAL PROPERTIES OF THE POTATO VIRUS N

Summary

Strain NR of potato virus N was found to have a phosphorus content of 1.74 and Strain VR of polato virus is was found to have a phosphorus content of 1.74 and RNA content of 18 per cent. RNA has a base ratio of adenine 22.2, guanine 26.1, cytosine 22.3, and uracil 29.4 per cent. From a curve of electrophoretic mobility versus pH the isoelectric point of the virus was found to be 5.8. The molecular weight of the virus is approximately $5.6 \cdot 10^6$, based on the sedimentation constant of 92.6 S and the diffusion coefficient of $1.22 \cdot 10^{-7}$ sq.cm. per second.

These data support a supposition that the potato virus N is a strain of the cucumber mosaic virus.

Academy of Sciences of the Estonian SSR, Institute of Experimental Biology

Received July 11, 1973