EESTI NSV TEADUSTE AKADEEMIA TOIMETISED, XVIII KÖIDE BIOLOOGIA. 1969, nr. 2

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ XVIII виология. 1969, № 2

https://doi.org/10.3176/biol.1969.2.15

Л. ХАЛЛОП, У. МАРГНА

О ХАРАКТЕРЕ НАКОПЛЕНИЯ АНТОЦИАНОВ В ГИПОКОТИЛЯХ ГРЕЧИХИ ПРИ ПРОДОЛЖИТЕЛЬНЫХ СВЕТОВЫХ ЭКСПОЗИЦИЯХ

L. HALLOP, U. MARGNA. ANTOTSÜAANIDE MOODUSTUMISE ISEÄRASUSTEST TATRA HÜPOKOTÜÜLIDES PIKKADE VALGUSTUSAEGADE KORRAL

L. HALLOP, U. MARGNA. ON THE NATURE OF ANTHOCYANIN ACCUMULATION IN BUCKWHEAT HYPOCOTYLS AT PROLONGED EXPOSITIONS TO LIGHT

В одной из наших предыдущих работ (Hallop, Margna, 1968) показано, что количество антоцианов, образовавшихся в гипокотилях проростков гречихи, зависит от продолжительности иницирующего светового периода, причем в пределах экспозиций продолжительностью до 16 ч эта зависимость практически имеет линейный характер. При более длительном освещении характер ее несколько изменился, но светового насыщения этого процесса не происходило — более или менее интенсивное образование антоцианов продолжалось во всем диапазоне изученных экспозиций (до 54 4). С другой стороны, в отношении рутина аналогичная линейность наблюдалась лишь в пределах 1-6-часовых экспозиций. В дальнейшем относительная эффективность освещения значительно снижалась, и при экспозициях продолжительностью 24 ч и больше можно было уже говорить о полном насыщении процесса (Hallop, Margna, 1969). В то же время в одной из других работ нашей лаборатории установлено, что у проростков гречихи существует так наз. оптимальная продолжительность предварительной световой экспозиции (примерно 15 ч), при которой последующий темновой биосинтез антоцианов (в течение 24 ч темноты) происходит с максимальной эффективностью. При более коротких или более длинных экспозициях количество антоцианов, дополнительно образовавшихся в темноте, было меньше, и начиная с 25-32-часовых световых периодов темнового синтеза накопления антоцианов практически уже не происходило (Тохвер, Воскресенская, в печати). Следовательно, и при процессах биосинтеза антоцианов в какой-то мере должен проявляться эффект насыщения.

В связи с этим представляет интерес изучение кинетики образования антоцианов в гипокотилях гречихи при более продолжительных экспозициях, чем это делалось нами раньше (Hallop, Margna, 1968), чтобы и в этих условиях подробнее охарактеризовать ход образования антоцианов как во время световой экспозиции, так и в течение последующего темнорого периода. Выращивание проростков, их световая обработка и определение антоцианов проводились в данных экспериментах по той же методике, которая применялась нами ранее (Hallop, Margna, 1968). Продолжительность освещения в опытах — 6, 12, 24 и 48 ч (постоянное освещение); интенсивность освещения — 27 500 эрг/см² · сек. Кинетику образования антоцианов наблюдали в течение 48 ч с момента начала световой экспозиции.

Результаты исследования представлены на рисунке.

Рис. а — накопление антоцианов в гипокотилях проростков гречихи при 6-, 12-, 24- и 48-(постоянном)часовом освещении; стрелочкой указан момент прекращения световой обработки; б — количество антоцианов, сбразсвавшихся в гипокотилях к концу 48-часового периода при экспозициях разной продолжительности.

Как видно из рисунка, говорить о предполагаемом насыщения процесса накопления антоцианов во время световой экспозиции без учета их дополнительного образования в темноте все же нельзя. Форма кинетической кривой образования антоцианов при постоянном освещении ясно показывает, что в течение 30—35 ч, за исключением короткой лаг-фазы, накопление антоцианов совершенно линейно продолжительности освецения. Лишь после этого накопление пигментов приобретает нелинейный характер, но тем не менее насыщения, по крайней мере в течение 48-часового периода, не наблюдается. Таким образом, эти данные еще раз свидетельствуют о сравнительно большой световой «емкости» аппарата биосинтеза антоцианов проростков гречихи.

При рассмотрении всех кинетических кривых рисунка на полном их протяжении и сопоставлении их с кривой конечного количества образо-

вавшихся антоцианов, нанесенной на тот же рисунок для сравнения, обнаруживается ряд новых аспектов, которые при изучении кинетики накопления пигментов при коротких экспозициях остались нераскрытыми. Оказывается, что хотя и в этом диапазоне экспозиций увеличение продолжительности светового периода приводит к значительному увеличению абсолютного количества синтезированных в гипокотилях антоцианов, эта зависимость здесь уже не линейна, а аналогично изменению накопления рутина уже при более коротких экспозициях (Hallop, Margna, 1969) также наблюдается постепенное снижение относительной эффективности световой обработки. При этом характерно, что снижение эффективности освещения проявляется не только в уменьшении количественного выхода темнового синтеза антоцианов, что в других экспериментальных условиях было показано уже В. Тохвером и Н. Воскресенской (в печати), но и в постепенном сокращении всего периода темнового биосинтеза пигментов вообще.

Судя по кинетическим кривым, темновой биосинтез антоцианов практически прекращается к 30-32 ч с начала освещения независимо от длины экспозиции. Это показывает, что внутренние предпосылки, обусловливающие реализацию стимулирующего эффекта света в последуюших процессах темнового синтеза антоцианов, к этому сроку уже полностью исчерпаны. Сама же способность продолжать синтез пигментов в гипокотилях у проростков сохраняется. Однако дальнейшее увеличение количества антоцианов происходит, по-видимому, только за счет тех биохимических реакций, которые протекают в проростках в течение светевой экспозиции.

Полученные данные показывают, что световое насыщение процессов биосинтеза антоцианов в гипокотилях проростков гречихи носит дифференцированный характер. Оно четко обнаруживается в отношении накопления антоцианов в следующей за периодом освещения темновой фазе их образования, но не проявляется в отношении накопления антоцианов в гипокотилях в период световой экспозиции.

Конечно, не исключено, что насыщение наступает при больших продолжительностях или при более высоких интенсивностях освещения. Следует, однако, отметить, что в таком случае формально устанавливаемое насыщение не должно обязательно отражать достижение истинного предела светочувствительности этих процессов, а может быть просто результатом ослабления общей физиологической реактивности проростков, у которых при непрерывном освещении уже к концу 48-часового периода явно обнаруживаются признаки светового повреждения.

ЛИТЕРАТУРА

Тохвер А. К., Воскресенская Н. П., Зависимость образования антоциановых пигментов в гипокотилях гречихи от режима освещения. Физиол. раст. (в пе-

чати). p L., Margna U., 1968. Antotsüaani moodustumise kineetika tatraidandite Hallop L., Hallop L., Margina C., 1968. Antosuaam moodustumise kineetika tatradanutte hüpokotüülides, olenevalt indutseeriva valgusperioodi kestusest ja valguse inten-siivsusest. ENSV TA Toimet. Biol. 17 (2) : 154–163.
Hallop L., Margina U., 1969. Rutiini moodustumise kineetika tatraidandite hüpoko-tüülides olenevalt valgustusest. ENSV TA Toimet. Biol. 18 (2).

Институт экспериментильной биологии Поступила в редакцию Академии наук Эстонской ССР 10/XII 1968