EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. XVIII KÕIDE BIOLOOGIA. 1969, nr. 2

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ XVII: БИОЛОГИЯ. 1969, № 2

https://doi.org/10.3176/biol.1969.2.04

B. KACK

СРАВНИТЕЛЬНОЕ ИЗУЧЕНИЕ ЗАВИСИМОСТИ РАЗМЕРОВ КРЫЛА DROSOPHILA MELANOGASTER ОТ ТЕМПЕРАТУРНЫХ УСЛОВИЙ РАЗВИТИЯ

Один из основных вопросов современной онтогенетики — изучение характера формирования признака в зависимости от условий развития организма.

В задачу исследования входило сравнительное изучение длины крыла у разных линий дрозофилы в различных температурных условиях. Такие исследования в настоящее время представляют большой интерес в связи с вопросом о роли генотипа и условий развития в проявлении количественных признаков. Эти признаки часто дают сложную картину наследования (Waddington, 1941) и обычно им свойственна значительная изменчивость (Clayton, Robertson, 1955; Milkman, 1965 и др.).

При исследовании использовались теория критических периодов развития (Беляева, 1946; Лобашев, 1940; Екег, 1935; Harnley, 1936) и данные литературы о зависимости степени проявления признаков от условий внешней среды (Reeve, Robertson, 1953; Robertson, 1960; Semenza, 1951).

Материал и методика

Материалом для исследования служили три лабораторные линии Drosophila melanogaster дикого типа: Кантон-С, Р-86 и Иноземцево — с разной генетической радиочувствительностью (Волчков, Воробцова, 1964).

Мухи содержались на обычном дрожжевом корме в термостате при температур
с $25\pm0.5^{\circ}\,\mathrm{C}.$

Измерения крыла проводились при помощи светового микроскопа с примелением окулярмикрометра. Полученные условные единицы переводились в миллиметры. Измерения производились только при нормально сфокусированном крыле, т. е., когда вся площадь крыла находилась в фокусе. Повторные измерения показали, что ошибка при такой методике не превышает 1%. В связи с тем, что величина правого и левого крыла у мух варьирует незакономерно (Reeve, Robertson, 1954), измерялось только правое или только левое крыло. Опыт проводился при следующих температурах: 15,0°, 17,5°, 20,0°, 22,5°, 25,0°, 27,5° с колебанием $\pm 0,5°$. В пределе этих температур понижения жизнеспособности мух не было отмечено. Каждый вариант опыта состоял из трех повторностей, которые дали одинаковые результаты.

Результаты и обсуждение

Данные о зависимости длины крыла у мух от принадлежности к разным линиям разного пола и температуры развития приведены в табл. 1 и на рисунке.

Таблица 1

Зависимость длины крыла от температуры развития у разных линий Drosophila melanogaster

S						Гено	тип					
· · · ·	Кантон-С				P86				Иноземцево			
Typ	φç		5 5		Q Q		6 8		Q Q		88	
Te	n	$x \pm m$	n	$x \pm m$	n	$x \pm m$	n	$x \pm m$	n	$x \pm m$	п	$x \pm m$
15,0 17,5 20,0 22,5 25,0 27,5	176 82 62 119 318 99	$\begin{array}{c} 1,70\pm 0,002\\ 1,74\pm 0,002\\ 1,65\pm 0,004\\ 1,61\pm 0,002\\ 1,57\pm 0,002\\ 1,55\pm 0,002 \end{array}$	116 60 80 130 302 112	$\begin{array}{c} 1,48\pm 0,002\\ 1,52\pm 0,002\\ 1,46\pm 0,002\\ 1,43\pm 0,002\\ 1,36\pm 0,002\\ 1,34\pm 0,002\end{array}$	40 114 60 238 97 64	$\begin{array}{c} 1,77\pm0,002\\ 1,86\pm0,002\\ 1,87\pm0,002\\ 1,74\pm0,002\\ 1,64\pm0,002\\ 1,58\pm0,006 \end{array}$	45 119 64 249 82 40	$\begin{array}{c} 1,53\pm 0,002\\ 1,64\pm 0,002\\ 1,64\pm 0,002\\ 1,50\pm 0,002\\ 1,50\pm 0,002\\ 1,44\pm 0,002\\ 1,37\pm 0,004 \end{array}$	116 82 59 128 68 108	$\begin{array}{c} 1,83\pm0,002\\ 1,90\pm0,002\\ 1,75\pm0,004\\ 1,77\pm0,004\\ 1,67\pm0,006\\ 1,58\pm0,004 \end{array}$	68 98 70 128 72 86	$\begin{array}{c} 1,61\pm 0,002\\ 1,67\pm 0,002\\ 1,59\pm 0,004\\ 1,55\pm 0,002\\ 1,46\pm 0,002\\ 1,36\pm 0,004 \end{array}$

крыла Drosophila melanogaster от длины температуры развития.

Трехфакторный дисперсионный анализ данных позволил изучить зависимость длины крыла от пола мух, температуры развития и геногипа (принадлежность к разным линиям). Результаты дисперсионного анализа приведены в табл. 2.

MM

Таблица 2

	0.7428.9	Suban Sa		N DRONG	F табличное		
Источник варьирования	\$\$	df	ms	F факти- ческое	при Р=0,05	при Р==0,01	
Общее Фактор А (генотип) Фактор В (температура) Фактор С (пол) А × В В × С А × С А × В × С Случайные отклонеаня	$\begin{array}{r} 45\ 008\\ 4\ 749\\ 13\ 938\\ 19\ 365\\ 1\ 924\\ 76\\ 2\\ 72\\ 4\ 882 \end{array}$	$ \begin{array}{c} 2 \\ 5 \\ 1 \\ 10 \\ 5 \\ 2 \\ 10 \\ 684 \end{array} $	2 374 2 788 19 365 192,4 15,2 1,0 7,2 7,1	334 393 2 727 27,1 2,1 0,1 1,0	3,07 2,29 3,92 1,91 2,29 3,07 1,91	4,79 3,17 6,85 2,47 3,17 4,79 2,47	

Данные дисперсионного анализа зависимости варьирования длины крыла от температуры, генотипа и пола

Анализ показывает, что пол, температура и генотип имеют достоверное влияние на длину крыла. Особенно значительное влияние полового фактора объясняется тем, что самки обычно крупнее самцов. По данным литературы, существует корреляция между величиной особи и длиной крыла. Из трех факторов (температура, пол, линии) самое слабое влияние на проявление признака имеет генотип. В зависимости от генотипа между отдельными линиями явные различия обнаружены в пределах температур 15,0...22,5°, но при температуре 22,5...27,5° различий между линиями не отмечено (рис. 1 — кривые более или менее параллельны). Если у линий Кантон-С и Иноземцево длина крыла максимально выражена при 17,5° и дальнейшее понижение температуры сопровождается сокращением длины, то у Р-86 длина крыла максимальна при 20,0°. В табл. 1 и на рисунке видно, что самое короткое крыло у Кантон-С, а самое длинное — у Иноземцево.

Особенно большое влияние на длину крыла оказывает температура развития. В условиях пониженных температур у всех линий происходит удлинение крыла, которое достигает максимума при определенной температуре (в зависимости от генотипа), после этого параллельно с понижением температуры происходит сокращение крыла.

При сравнении полученных данных с данными серий vestigial и shortwing (Eker, 1939) выясняется, что у трех изученных линий в протизоположность мухам генотипа vestigial и short-wing длина крыла максимальна при низких температурах (17,5...20,0°). Таким образом, полученные результаты согласуются с данными некоторых исследователей (Harnley, 1936), где также показана связь между температурой развития и длиной крыла. Сам факт наличия линий, отличающихся по характеру выражения признака, вероятно, поможет подойти к выяснению природы мутирования.

Выводы

1. При выращивании культуры Drosophila melanogaster при температуре в пределах 15,0 ... 27,5° установлено соответствие между длиной крыла особи и температурой ее развития. У всех трех изученных линий при понижении температуры до определенной, критической для линии, наблюдалось увеличение длины крыла. При дальнейшем понижении температуры начиналось укорочение его.

 Критической температурой для линии P-86 является 20,0°, для линий Кантон-С и Иноземцево — 17,5°.

3. Длина крыла у самок всех изученных линий примерно на 0,2 мм длиннее, чем у самцов, и эта разница сохраняется при всех температурах. Рсакция на изменение температуры происходит одинаково как у самцов, так и у самок.

ЛИТЕРАТУРА

Беляева В. Н., 1946. Изменчивость жилкования крыла в природных популяциях Drosophila melanogaster. JAH CCCP 54 (7).

Волчков Ю. А., Воробцова И. Е., 1964. Сравнительное изучение частоты возникновения доминантных летальных мутаций у разных линий Drosophila melanogaster. Вестник ЛГУ (15).

Лобашов М. Е., 1940. Физиологическая дискретность онтогенеза и получение направленных модификаций. ДАН СССР 28 (9).

Eker R., 1935. The short-wing gene in *Drosophila melanogaster* and the effect of temperature on its manifestation. J. Genet. 30: 357.
 Eker R., 1939. Further studies on the effect of temperature on the manifestation of

the short-wing gene in Drosophila melanogaster. J. Genet. 38: 201.

 Glayton G. E. and Robertson A., 1955. Mutation and quantitative variation. Amer. Naturalist 89 : 151-158.
 Harniey M. H., 1936. The temperature-effective period and the growth curves for length and area of the vestigial wings of *Drosophila melanogaster*. Genetics 21:84-103.

Milkman R. D., 1965. The genetic basis of natural variation. Selection of a crossveinless strain of Drosophila melanogaster by phenocopying at high temperature. Genetics 51 : 87-91.

Reeve E. C. R. and Robertson F. W., 1953. Analysis of environmental variability in quantitative inheritance. Nature (171) : 874-875.

Robertson F. W., 1960. The ecological genetics of growth in *Drosophila*. I Body size and developmental time on different diets. Genet. Res. 1 : 228-309.

Semenza L., 1951. Interaction of genes affecting the wing in *Drosophila melano-gaster*. Nature (167): 73.
 Waddington C. H., 1941. The genetic control of wing development in *Drosophila*.

J. Genet. 41 : 75-139.

Институт экспериментальной биологии Поступила в редакцию Академии наук Эстонской ССР

27/VIII 1968

V. KASK

DROSOPHILA MELANOGASTER'I TIIVA PIKKUSE SÕLTUVUS **TEMA ARENEMISKESKKONNA TEMPERATUURIST**

Resümee

Keskkonna mõju selgitamiseks tunnuse avaldumisele uuriti arenemiskeskkonna temperatuuri mõju Drosophila melanogaster'i tiiva pikkusele kolmel erineva kiirgustundlikku-

sega laboratoorsel liinil (wild type). Katseks valitud materjal hoiti ja kasvatati temperatuuridel 15,0°, 17,5°, 20,0°, 22,5°, 25,0° ja 27,5°C (\pm 0,5°). Selgus, et kõigil kolmel liinil kaasnes temperatuuri langusele tiiva pikenemine, mis toimus kindla, genotüübist sõltuva kriitilise temperatuurini; temperatuuri edasisel langusel kasvas tiib lühem.

Liinidevaheline erinevus ilmnes temperatuuridel 15;0...20,0°. Vahemikus 20,0... ..27,5° oli reaktsioon temperatuuri muutustele kolmel liinil ühesugune. Genotüübist söltuvalt saavutas tiib maksimaalse pikkuse liinil P-86 temperatuuril 20,0°, liinidel Kanton-S ја Иноземцево temperatuuril 17,5°.

Eesti NSV Teaduste Akadeemia Eksperimentaalbioloogia Instituut

Saabus toimetusse 27. VIII 1968 V. KASK

COMPARATIVE STUDY OF THE DEPENDENCE OF WING LENGTH ON THE CONDITION OF TEMPERATURE IN DROSOPHILA MELANOGASTER

Summary

The relationship between the wing length and the condition of temperature was studied in *Drosophila melanogaster* on three lines of different radiosensitivity in order to determine the influence of temperature on the length of wings.

The lines were grown up at the following fixed temperature: 15.0° , 17.5° , 20.0° , 22.5° , 25.0° , 27.5° C with deviation of a $\pm 0.5^{\circ}$. The data obtained revealed that in all the three lines the wing length increased in connection with the fall of temperature until a critical point that was different in all the lines, depending on the genotype. From this critical point, with a further fall of temperature, a decrease of the wing length was observed.

The differences between the lines were shown at a temperature of 15.0° to 20.0°, whilst at 20.0° to 27.5° the reaction of all the three lines was similar. In dependence on the genotype, the maximum wing length was observed in the line P-86 at 20.0°, and in the lines Canton S and Inozemtsevo at 17.5°.

Academy of Sciences of the Estonian SSR, Institute of Experimental Biology Aug. 27, 1968