Изв. АН Эстонии. Биол., 1990, 39, № 1, 16—20 https://doi.org/10.3176/biol.1990.1.03

УДК 631.46

Галина ГРОССМАН, Хельда РИЙС

ЭФФЕКТ ОТ УДОБРЕНИЯ МИКРОЭКОСИСТЕМЫ ПОЧВЕННЫХ МИКРООРГАНИЗМОВ МИНЕРАЛЬНЫМИ ЭЛЕМЕНТАМИ

Согласно существующему ныне положению, интенсивное использование минеральных удобрений снижает содержание органического вещества (OB) в почве сельскохозяйственных угодий (Гетманец, 1969 и др.). В работе Б. С. Носко (1987) показано, что ежегодные потери OB в неудобряемом на протяжении 13 лет пахотном слое составляют 0,7 т/га, а в случае внесения минеральных источников азота и фосфора — 2,1 т/га. Есть основание полагать, что это обусловлено изменением микробиологических процессов в почве под воздействием минеральных элементов питания. Проведенные исследования показывают значительное увеличение численности бактерий под воздействием азотных и фосфорных минеральных удобрений (Егорова, Стефурак, 1974 и др.).

Настоящая работа является исследованием структуры сообщества почвенных микроорганизмов в условиях лимитирования биогенными элементами, а также возникших при внесении минеральных форм азота и фосфора изменений.

Объект и методы исследования

Объектом исследования служила аксеническая лабораторная микроэкосистема, полученная путем внесения 20 г нестерильной почвы в восемь 200 мл стеклянных колб, заполненных наполовину (100 мл) водой. Чэтыре микроэкосистемы служили контрольными (1 вариант). Сообщество в этих колбах развивалось в условиях лимитирования биогенными элементами. В остальные четыре колбы добавляли 490 мг/л NH₄NO₃ и 58 мг/л K₂HPO₄ (2 вариант). Расчет необходимых количеств азота и фосфора проводили по математической модели замкнутой экосистемы микроскопических организмов (Фиштейн и др., 1983) таким образом, чтобы содержание азота при малых количествах углерода (содержание углерода в почве устанавливали по агрохимическим данным) было несколько выше уровня лимитирования азотом, а содержание фосфора относительно углерода и азота — максимальным.

Колбы закрывали ватными пробками и устанавливали в люминостат с круглосуточным освещением при интенсивности света 2800 лк и температуре 28 °C.

Почва с микроорганизмами была отобрана из биометра, заложенного на опытном участке Института экспериментальной биологии АН ЭССР (Рахно, 1964), где она содержалась под паром без добавления удобрений. На момент составления микроэкосистемы в 100 г абсолютно сухой почвы содержалось 1,1 мг нитратов, 5,6 мг обменного аммония, 8,5 мг фиксированного аммония. рНксі почвы была 6,4.

На протяжении опыта (340 сут) в развивающихся биоценозах следили за численностью гетеротрофных бактерий, грибов, простейших и водорослей методом посева на твердые и жидкие среды из серийных разведений и прямым подсчетом водорослей и простейших в камере Горяева с помощью светового микроскопа. По мере испарения жидкости в колбы добавляли дистиллированную воду. Для анализа структуры биоценоза пробы (2 мл) отбирали из одной и той же колбы. Остальные повторности были использованы для определения хлорофилла.

Для определения флористического состава водорослей в исходной почвенной пробе производили посев в жидкую среду Данилова (Новогрудский, 1956). Для подсчета общего количества гетеротрофных микроорганизмов использовали агаризованную и 10-кратно разбавленную почвенную вытяжку. Для выделения культур использовали минеральную среду с добавлением пептона, глюкозы и дрожжевой воды (Громов, Титова, 1983, среда № 3). Из доминирующих типов колоний производили выделение культур. После их очистки и проверки на чистоту с помощью просмотра под микроскопом и методом посева устанавливали их родовую принадлежность по определителю бактерий Берги (Вегgey's Manual of ..., 1974). При идентификации использовали следующую информацию: данные морфологического исследования живых и фиксированных препаратов, результаты окрашивания по Граму и на кислотоустойчивость, наличие жгутиков и спор, отношение к кислороду, гидролиз желатина, наличие липазы. В качестве культур для сравнения использовали Bacillus subtilis BKMB 428, Pseudomonas fluorescens ВКМВ 894, Mycobacterium rubrum ВКМА 1167. Идентификацию водо-рослей осуществляли до рода с использованием ряда руководств (Голлербах и др., 1952; Дедусенко-Щеголева, Голлербах, 1962; Андреева, 1975), идентификацию грибов — с помощью определителя низших растений (Курсанов и др., 1954).

Для определения хлорофилла выпаривали 5 мл суспензии, сухой остаток сохраняли при —4 °С в холодильнике. Пигменты экстрагировали ацетоном в конце эксперимента. В экстракте измеряли спектры поглощения в диапазоне длин волн 440—750 нм с помощью спектрофотометра СФ-10. Содержание хлорофилла определяли по показаниям прибора как разницу между длиной волн 680 и 745 нм и выражали в условных единицах.

Результаты и обсуждение

За первые же сутки наблюдений в обоих вариантах значительно увеличилось общее количество бактерий. Это явилось следствием снятия по крайней мере двух возможных лимитирующих факторов, а именно, влажности и температуры. В удобренном варианте расцвет бактериальной флоры продолжался и достиг максимума на 20 сут эксперимента (рисунок). Численность доминирующих форм бактерий в это время в лимитированном по минеральным элементам питания варианте составляла 6 · 10⁹ клеток / мл, а в нелимитированном 2 · 10¹² клеток / мл.

Таблица 1

Смена доминантных форм гетеротрофных микроорганизмов в микроэкосистеме

Время, сут	Вариант 1	Вариант 2		
0	Pseudomonas	Pseudomonas		
8	Pseudomonas Bacillus	Pseudomonas Nocardia		
17	Bacillus Pseudomonas Streptomyces	Pseudomonas Streptomyces		
24	Bacillus Mycobacterium Pseudomonas Actinomyces Nocardia	Nocardia Streptomyces		
40	Bacillus Nocardia	Mycobacterium Streptomyces		
64	Bacillus Nocardia Streptomyces	Actinomyces Mortierella		
264	Mycobacterium Bacillus	Mycobacterium Mortierella		

Таблица 2

Содержание хлорофилла (ед. опт. плотн.) в микроэкосистеме

Варнант	Время, сут					
	1	20	64		130	225
1	0,00	0,08	0,08		0,12	0,12
2	0,00	0,00	0,02		0,02	0,02

За период эксперимента в удобренной микроэкосистеме наблюдали три периода вспышки численности бактерий, а в неудобренной — два (рисунок). В процессе сукцессии в обоих вариантах происходила смена доминантных форм гетеротрофов (табл. 1), причем смена при введении в среду удобрений происходила чаще. В варианте 1 среди гетеротрофов доминировали в основном бактерии, а в варианте 2 — актиномицеты и грибы. Численность водорослей в неудобренном варианте поднималась быстрес, чем в удобренном, за 64 сут соответственно до $3,2 \cdot 10^4$ и $1,3 \cdot 10^3$ особей / мл. К 170 сут значение численности водорослей в обоих вариантах было одного порядка: $1,2 \cdot 10^5$ особей / мл в контрольном варианте и $2,5 \cdot 10^5$ особей / мл в варианте с внесением минеральных удобрений.

Таким образом в сообществе, получившем минеральное питание, наиболее активным было гетеротрофное звено, в лимитированном — автотрофное. Внесение минеральных веществ в микроэкосистему вызвало гетеротрофную сукцессию. Основной поток углерода в системе был следующий: ОВ почвы — гетеротрофы — воздух. В лимитированном же варианте сообщество развивалось по типу автотрофной сукцессии. Об этом свидетельствует как структура сообщества, охарактеризованная выше, так и данные по содержанию хлорофилла в системах (табл. 2). Здесь углерод для биосинтеза поступал из воздуха и вовлекался в круговорот веществ. Основной его поток осуществлялся по следующей схеме: воздух — автотрофы — гетеротрофы — ОВ почвы. В варианте 1 из-за недостатка минеральных элементов питания ОВ почвы не может быть использовано гетеротрофами и сообщество функционирует за счет фото-

Таблица 3

Список наименований водорослей и простейших, доминирующих в микроэкосистеме в конце эксперимента и в исходной почве

Варнант 1	Варнант 2	Исходная почва	
Сн	незеленые водоросл	н	
Phormidium Anabaena Nostoc Spirulina Oscillatoria Lyngbya Arthrospira Anabaenopsis Synechococcus Rhabdoderma	Nostoc Phormidium Oscillatoria	Nostoc Phormidium Cylindrospermum	
and a state of the second	Зеленые водоросли		
Chlorella Scenedesmus	Chlorella Dictyosphaerium	Chlorella	
Жел	то-зеленые водорос	ли	
Botrydiopsis			
Д н	атомовые водоросл	И	
Nitzschia			
	Простейшие		
Mastigophora Ciliata	Mastigophora		

синтеза автотрофов, а в варнанте 2 основным поставщиком энергии и углерода для биосинтеза является ОВ почвы.

Исследования гнотобиотических микроэкосистем (Фиштейн, Ковров, 1985; Гроссман, 1989) показали возможность антибиотического воздействия одного трофического звена системы на другое при получении ими дополнительных ресурсов развития. В микроэкосистеме, рассмотренной в данной статье, имелся некоторый запас ОВ в виде гумуса почвы. Сообщество оказалось лимитированным минеральными элементами питания. Введение азота и фосфора дало гетеротрофным микроорганизмам возможность реализовать свою более высокую скорость роста по сравнению с фотосинтезирующими водорослями и тем самым увеличить свою плотность. Это привело к антибиотическому торможению роста водорослей растущими популяциями гетеротрофов.

Ранее в гнотобнотических микроэкосистемах при создании условий для вспышки численности одного из видов организмов наблюдали обеднение видового состава биоценоза (Фиштейн, 1984). В настоящем эксперименте проявился такой же эффект. Он хорошо демонстрируется небольшим разнообразием водорослей и простейших в варианте 2 по сравнению с контролем (табл. 3). Из полученных данных вытекает следующий вывод. Любое внешнее воздействие на естественное сообщество микроорганизмов, дающее дополнительный ресурс для развития отдельных видов или трофических звеньев приводит к вспышке численности этих видов или трофических звеньев и к временному обеднению видового разнообразия сообщества. Восстановление разнообразия в природных условиях, видимо, осуществляется в основном интродукцией видов. Этот интересный и практически важный вопрос требует дополнительных исследований.

Одним из внешних воздействий на сообщества почвенных микроорганизмов в культурных агроценозах являются минеральные удобрения.

2*

Они вызывают существенные изменения в характере питания сообщества, в численности популяций и в видовом разнообразии. Наблюдаемое на практике уменьшение гумуса в почве при долговременном использовании минеральных удобрений является следствием стимуляции развития гетеротрофного звена сообщества почвенных микроорганизмов.

ЛИТЕРАТУРА

Андреева В. М. Род Chlorella. Л., 1975.

Гетманец А. Я. Качественный состав гумуса выщелоченного чернозема при длительном

применении удобрений // Весть с.-х. науки. 1969, № 2, 116—118. Голлербах М. М., Косинская Е. К., Полянский В. И. Определитель пресноводных водо-рослей СССР. Зеленые водоросли. М.—Л., 1952. Громов Б. В., Титова Н. Н. Коллекция культур водорослей лаборатории микробнологии

Биологического института Ленинградского университета // Культивирование коллекционных штаммов водорослей. Л., 1983.

Гроссман Г. Н. Функционирование микробных сообществ в условиях замкнутых микро-экосистем // Изв. АН СССР. Серия биол., 1989 (в печати). Дедусенко-Щеголева Н. Т., Голлербах М. М. Определитель пресноводных водорослей

СССР. Желто-зеленые водоросли. М.-Л., 1962.

Егорова С. Ф., Стефурак В. П. Динамика численности и биомассы бактерий в лесных почвах и влияние на нее влажности, температуры и удобрений // Динамика микробиологических процессов в почве. Ч. 2. Таллинн, 1974, 95—97. Курсанов Л. И., Наумов Н. А., Красильников Н. А., Горленко М. В. Определитель низ-ших растений. Грибы. Т З. М., 1954.

Новогрудский Д. М. Почвенная микробиология. Алма-Ата, 1956.

Носко Б. С. Изменение гумусного состояния чернозема типичного под влиянием удобрений // Почвоведение, 1987, № 5, 26-32.

Рахно П. Х. Сезонная динамика почвенных бактерий. Таллинн, 1964. Фиштейн Г. Структура сообщества микроскопических организмов в замкнутых микроэкосистемах // Изв. АН ЭССР. Биол., 1984, 33, № 2, 137-143.

Фиштейн Г. Н., Ковров Б. Г. Микроэкосистемы и опыт их использования для изучения жизни простейших в сообществе микроскопических организмов // Ж. общ. биол.,

1985, 46, № 3, 336—344. Фиштейн Г. Н., Ковров Б. Г., Губанов В. Г., Абросов Н. С. Моделирование экосистем на основе одноклеточных организмов // Человек и биосфера. Вып. 8. М., 1983, 186-223.

Bergey's Manual of Determinative Bacteriology. 8th ed. Baltimore, 1974.

Институт экспериментальной биологии Академии наук Эстонской ССР

Поступила в редакцию 23/XI 1988

Galina GROSSMAN, Helda RIIS

MINERAALAINETEGA VÄETAMISE TOIME MULLA MIKROORGANISMIDE MIKROÖKOSÜSTEEMILE

Uurimisobjektiks oli mikroökosüsteem 200 ml klaaskolvis ööpäevase valgustuse juures. Ammooniumnitraadi ja kaaliumfosfaadi (vastavalt 490 mg/l ja 58 mg/l) lisamine mikroökosüsteemile kutsus esile heterotroofsete mikroorganismide vohamise. Variandis, kuhu ei lisatud mineraalset lämmastikku ega fosforit, domineerisid vetikad. Stagnatsioo-niprotsesside tagajärjel esinesid väetatud süsteemis autotroofidest vaid sini- ja rohevetikad (5 perekonda), väetamata süsteemis sini-, rohe-, räni- ja eriviburvetikad (14 pere-konda). Heterotroofidest domineerisid väetatud variandis perekond Actinomyces ja seened, väetamata variandis bakterid perekondadest Bacillus ja Nocardia.

Galina GROSSMAN, Helda RIIS

AN EFFECT OF MINERAL FERTILIZERS ON THE MICROECOSYSTEM **OF SOIL MICROORGANISMS**

A self-supporting microecosystem in 200 ml glass flask was studied. Addition of 490 mg/l ammonium nitrate and 58 mg/l potassium phosphate in the medium caused the bloom of heterotrophic microorganism. In the absence of nitrogen and phosphorus the bloom of algae were observed. In a steady state of the fertilized system the autotrophic link consists of blue-green and green algae of 5 genera, but the unfertilized one consists of blue-green, green, golden and diatoms of 14 genera. In the fertilized version Actino-myces and Mortierella and in the unfertilized one Bacillus and Nocardia prevailed among heterotrophs of their system.