LÜHITEATEID * КРАТКИЕ СООБЩЕНИЯ SHORT COMMUNICATIONS

EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. BIOLOOGIA ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. БИОЛОГИЯ PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE ESTONIAN SSR. BIOLOGY

1988, 37, 1

УДК 591.9(26)

https://doi.org/10.3176/biol.1988.1.08

Ado SEIRE

BENTHIC FAUNA IN THE DEEP AREAS OF THE GULF OF FINLAND AND EASTERN GOTLAND BASIN IN 1984 AND 1985

Ado SEIRE. SOOME LAHE SÜGAVAMATE ALADE JA GOTLANDI NÕO PÕHJALOOMASTIK 1984. JA 1985. AASTAL

Адо СЕПРЕ. ДОННАЯ ФАУНА ГЛУБОКОВОДНЫХ РАЙОНОВ ФИНСКОГО ЗАЛИВА И ГОТЛАНД-СКОЙ КОТЛОВИНЫ В 1984 И 1985 ГГ.

In June-July 1984 zoobenthos was sampled in 32 stations in the deep areas of the Gulf of Finland and Eastern Gotland Basin. In May 1985 a detailed zoobenthos sampling (27 stations) was conducted in the southern part of Eastern Gotland Basin.

In both years a 0.1 m^2 van Veen grab was used, one sample was taken per station. The bottom samples were washed through a 0.4 mm sieve and the animals were stored in 96° spirit.

The author is obliged to Dr. A. Järvekülg for the identification of ostracods and mysids.

Gulf of Finland

In the eastern part of the Gulf of Finland at depths varying between 64 and 93 m a fairly diverse bottom fauna, including 9 species was present in June 1984 (Table 1 and the Figure). The following species with a total abundance of 640 ind./m² and total biomass 0.51 g/m² were observed at the 93 m depth: the polychaete *Harmothoë sarsi*, the crustaceans *Candona neglecta*, *Pontoporeia affinis* and *Mysis mixta* and the lamellibranch *Macoma baltica*.

The bottom fauna of the central part of the Gulf of Finland was very poor in June 1984 below 70 m (Table 1 and the Figure). The density recorded for the zoobenthos did not exceed 30 ind./m² at the depths of 70 and 84 m and 20 ind./m² at the depths of 94 and 113 m. At the 94 m depth only 2 species — *Candona neglecta* and *Mysis mixta* were present, at the depth of 113 m nothing but young specimens of *Macoma baltica* were found.

The zoobenthos of the depth region 72-88 m of the western part of the Gulf of Finland (Table 1 and the Figure) was in June 1984 represented by a very sparse population of *Harmothoë sarsi* (10-20 ind./m²) and young specimens of *Macoma baltica* (10-30 ind./m²). At one station (82 m) no bottom fauna was recorded in June 1984.

At the entrance to the Gulf of Finland (Table' 2 and the Figure), in June 1984 9 taxa of bottom animals were registered at the depth of 83 m. The total abundance of the bottom fauna was 1100 ind./m² and the total biomass 1.87 g/m². The abundance values were dominated by those of Table 1

			10A		88	&\m ₅	Jac	0.08								0.00		0.08
	art			STELL STELL		^s m\.bni		10								30		40
e 1984	tern p		II		32	&\ws	Min a											- 14
	Wes	19-10 V	C.K.M	No. 12	8	^s m', bni	1904											1
			0		2	&\m ₂	ontoe	0.18								0.00		0.18
					7	^s m\.bni		20								10		30
		L	B	E	13	g/m2	ARE	93	110	E	IT	NI	AM	AL	C F	0.00	NB	0.00
n Jun	20	8- 8	7	235	I	^s m\.bni	a o									20		20
ies and biomasses of the bottom fauna i	Central part	Stations	A	D	4	S/m2	AEV		0.00				0.00					0.00
			7.		6	^s m\.bni			10				10					20
			0	h, m	4	&\m ₂			0.00							0.00		0.00
			7(Dept	. 8	²m/.bni	ALC: Y		10							20		30
	(11)		A 9	2	(g/m2	dans	0.26	0.00								+	0.26
	131) A.R	TH			7(²m/.bni	191997 18157	20	10								+	30
	5	11 11 11 11 11 11 11 11 11 11 11 11 11			-	g/m2	i Pisi, bjitel	0.05	0.12	MIN	0.00	2 39	(9.5) }	0.22		0.12	2.57	0.51
Densi	1		6/	194	6	²m/.bni	nizie	10	530		10			20		70		640
iland.	part		6B	10	-	g/m²			0.04				0.22		0.01	00.0		0.27
of Fir				「「「「「「「「」」」」	78	^s m\.bni	1999		160				60		20	10		250
Gulf	astern		100		-	5/W3			0.02	6.28	4.77	0.22	0.33			0.00		11.62
The	E	1150	5		17	² m\.bni	18.91		60	10	400	30	10			10		520
	1	19.	11		111	&\1112	a an 12 SI		0.03		0.08		0.20			0.74		1.05
	0	10	9	11	64	^s m\.bni			160		10		30			30		230
		121	sa G	24	101	Harmon Marmo		nili	hiers M	29.	921	sqe	ery	VB	N. VI	i bi	itine (2a	repre
1(01 83 05 0 980	いの日日				species	nded in Fable' 2 Stered a L100 H	Harmothoë	sarsi	neglecta Mosidatoa	entomon	Pontoporeta affinis	Pontoporeia femorata	relicta	mixta	Insecta I. indet.	Paltica Flortra	crustulenta var. baltica	Total

68

Table 2

	The Entrance to the Gulf of Finland									Eastern Gotland Basin (northern part)						
	Stations															
	12C		12B		12A		1	2	15D		15C		15B		15A	
Species	Depth, m															
	83			95	112		118		86		94		105		120	
	ind./m ²	g/m²	ind./m ²	g/m²	ind./m ²	g/m²	ind./m ²	g/m^2	ind./m ²	g/m²	ind./m ²	g/m²	ind./m ²	g/m²	ind./m ²	g/m ²
Nematoda indet. Halicryptus spinulosus Harmothoë sarsi Candona neglecta Pontoporeia affinis Pontoporeia femorata Macoma ballica	30 130 70 720 10 130 10	0.00 0.03 0.92 0.13 0.09 0.70 0.00	30	0.00	100 H		10 1050 TEA 1057 TEA		10	0.26	40	0.32	20	0.45	or about motion of its means	and a state of the second seco
Total	1100	1.87	40	0.05			620		10	0.26	40	0.32	20	0.45	old.	

Densities and biomasses of the bottom fauna in June 1984

ostracod *Candona neglecta* (720 ind./m²) and biomass values by polychaete *Harmothoë sarsi* (0.92 g/m²). At the depth of 95 m only nematodes and young specimens of *Macoma baltica* were present. The bottoms at the depth of 112 m and below were devoid of bottom fauna in June 1984.

Eastern Gotland Basin

In the northern part of the Eastern Gotland Basin, the only species noted at the depths of 86—105 m was *Harmothoë sarsi* (Table 2 and the Figure). No bottom fauna was recorded at 120 m depth in June 1984. The bottoms in the central part of the Eastern Gotland Basin at the depth of 60—70 m were, in July 1984, inhabited by quite diverse fauna (Table 3 and the Figure). At 62 m depth 12 taxa of bottom animals with total abundance 5830 ind./m² and total biomass 4.15 g/m² were recorded. At the depth of 70 m 10 taxa of zoobenthos were found. The number of taxa registered at the depth of 80 m was five, at the depth of 90 m three and at the depth of 100 m — two. The bottoms at the depths of 110—120 m were populated merely by polychaete *Harmothoë sarsi*. In the samples taken at the depths of 130 and 140 m no bottom animals were recorded, but young specimens of *Pontoporeia affinis* were observed at the depth of 150 m.

In May 1985 ten species of bottom animals were recorded at the depth of 83 m in the southern part of the Eastern Gotland Basin (Table 4 and the Figure), namely, *Halicryptus spinulosus*, *Harmothoë sarsi*, *Pygospio elegans*, *Terebellides stroemi*, *Oligochaeta* sp., *Candona neglecta*, *Heterocyprideis sorbyana*, *Paracyprideis fennica*, *Diastylis rathkei* and *Macoma baltica*. At this depth the total abundance of the bottom fauna was 730 ind./m² and the total biomass 0.82 g/m². Unfortunately the bottom fauna Eastern Gotland Basin (central part). Densities and biomasses of the bottom fauna in July 1984

Table 3

	31	1.1	50	g/m2	ii inst m					0.00		0.00
1			1	^s m\.bni						20		20
	2		0	g/m ²	- Jacob							
	B	-	14	^s m\.bni								-
	3		0	&\m ₅	R.							
	9		13	^s m\.bni	TE							
	14		20	g/m²	1-	0.03						0.03
	0		15	² m\.bni		380						380
	35	No.	10	g/m²	L BI	0.57						0.57
IS		ш	1	² m/.bni		780						780
Station	36	Depth,	00	&\m ₅		0.57					0.04	0.61
-			1	^s m\.bni	E al	850					10	860
	1 1		0	g/m ²	0.00	0.05					0.00	0.05
105	0		6	^s m\.bni	10	50					30	06
	8		0	g/m²	2 A	0.00	10.0	10.0			0.02 0.11	0.14
1	9		8	² m\.bni	di kati	30 20	Uy	8			10 670	790
	<u> </u>	h	02	g/m²	00.0	0.03	0.24 0.01	0.02	0.01	0.07	0.01 6.13	6.52
		111	-	² m\.bni	20	140 30	390 70	130	60	50	20 70	980
	10	19	32	g/m2	00.0	0.03	0.02 0.25 0.01	0.42	0.07	0.01 2.90 0.11	0.32	4.15
	0	100	9	² m\.bni	130	300 80	10 630 40	3190	770	20 80 80	570	5830
			Species	were rei oiland E Gandon shuile re the Suti	Nematoda indet	Halicryptus spinulosus Harmothoë sarsi	1 erebellides stroemi Pygospio elegans Oligochaeta indet. Candona nealecta	Heterocyprideis sorbyana	Furacypriaeis fennica	oginerets tuberculata Mesidotea entomon Pontoporeia affinis	femorata Mysis mixta Macoma baltica	Total

70

The zoobenthos sampling stations in the deep areas of the Gulf of Finland and Eastern Gotland Basin in 1984 and 1985.

at the depths between 84 and 109 m was not investigated in the southern part of the Eastern Gotland Basin either in 1984 or in 1985. In June 1984 polychaetes *Harmothoë sarsi* and *Scoloplos armiger* were recorded at 110 m depth, the bottom at the depth of 140 m (the deepest station sampled in 1984) was inhabited by quite a rich population of young specimens of *Harmothoë sarsi* (1520 ind./m²; 0.22 g/m²). The bottom samples taken at the depth region 119–130 m in May 1985 indicated a very sparse fauna, 9 samples out of 14 were devoid of zoobenthos. Below 130 m depth only dead bottom was observed in the southern part of the Eastern Gotland Basin in May 1985. *Hyperia galba*, a crustacean, found in the samples, taken at the depths of 119 and 147 m, is a pelagic invertebrate.

Academy of Sciences of the Estonian SSR, Institute of Zoology and Botany Received Dec. 1, 1986