ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 31 БИОЛОГИЯ. 1982, № 1

https://doi.org/10.3176/biol.1982.1.06

УДК 536.253+581.522.5:582.47

Андрес КОППЕЛЬ

КОНВЕКТИВНАЯ ТЕПЛОПЕРЕДАЧА У ПОБЕГОВ ЕЛИ ЕВРОПЕЙСКОЙ

Введение

Конвективный теплообмен играет существенную роль в энергообмене, а тем самым и в определении температурного режима листа растения. Доля конвективного теплопереноса в энергетическом балансе листа зависит как от условий внешней среды, так и от параметров листа. В общем она сравнима с долей транспирационной теплопередачи (Клешнин, Шульгин, 1963; Gates, Benedict, 1963; Incropera, 1975).

Теплопередача C между воздухом и каким-либо объектом исследования с площадью внешней поверхности S cm^2 в промежутке времени t cek описывается законом Φ урье

$$C = k \cdot \triangle T \cdot S \cdot t \cdot d^{-1}$$
 ($\kappa a \Lambda$),

где k — коэффициент теплопроводности воздуха (при $T=20^{\circ}$ С и $p=760\,$ мм $p\tau$. $c\tau$.; $k=6\cdot 10^{-5}\,$ кал \cdot см $^{-1}\cdot$ с $^{-1}\cdot$ К $^{-1}$; Слейчер, 1970), $\triangle T$ — разница в температурах объекта и окружающего воздуха. При конвекции тепло переносится через пограничный слой толщиной d см. Отношение k/d называется коэффициентом конвекции h_c . Последний (как и d) зависит от физических свойств и от скорости потока газа, от ориентации тела относительно потока, а также от характера поверхности. Значения коэффициента h_c определены эмпирически для многих геометрических тел и реальных биологических объектов (табл. 1).

Ввиду методических трудностей исследования, данные о конвективном теплообмене хвойных в литературе весьма скудны (табл. 1). В американской биофизической школе Д. Гейтса для определения конвекции хвойных пользовались остроумными, но сложными методами, при помощи которых исследовали только одиночные побеги (Gates, Benedict, 1963; Tibbals и др., 1964). В данной работе пользуются более простым методом определения конвективного переноса, основанным на принципе сходства массо- и теплообмена. Метод позволяет вести наблюдения за более объемистым материалом.

Теоретические основы

Скорость испарения воды с единицы поверхности

$$E = \frac{\triangle c}{r_a} \left(e \cdot c M^{-2} \cdot c^{-1} \right),$$

где $\triangle c$ — разница концентрации водяного пара между воздухом и испаряющей поверхностью ($e \cdot c m^{-3}$) и r_a — диффузионное сопротивление

Коэффициенты конвекции для некоторых опытных геометрических тел и биологических объектов по данным литературы (L — характерная ширина тела (ширина листа в направлении ветра), W — ширина листа перпендикулярно к ветру, D — диаметр цилиндра, cM, V — скорость ветра, cM* c^{-1}).

Тело	$h_c(10^{-3}\kappa an \cdot cm^{-2} \cdot muH^{-1} \cdot K^{-1})$	Литературный источник
Свободная	конвекция (скорость ветра	V=0)
Горизонтальная пластина, верхняя сторона нижняя сторона в среднем Вертикальная пластина Цилиндр, независимо от	7,86 $(\triangle T/L)^{0,25}$ 3,87 $(\triangle T/L)^{0,25}$ 5,86 $(\triangle T/L)^{0,25}$ 6,04 $(\triangle T/L)^{0,25}$	Knoerr, Gay, 1965 "Gates, Benedict, 1963
ориентации Побеги Abies concolor Picea pungens Pinus ponderosa	$6,00 (\triangle T/L)^{0,25}$ $10,4 \triangle T^{0,25}$ $10,0 \triangle T^{0,25}$ $11,0+3,6 \triangle T^{0,3}$	Tibbals "и др., 1964 Gates и др., 1965
П	Іринудительная конвекция	
Горизонтальная пластина, параллельная ветру, широкий лист Цилиндрическое тело (хвоинка), перпендикулярно	$5,73(V/L)^{0,5}$ e $6,2(V/D^2)^{0,33}$	Kreith, 1958; Gates, 1965
ветру Широкий лист а) $W\gg L$ или $W=L>5$ см б) $W\ll L$ или $W=L\leqslant 5$ сл Побег Abies concolor	$10.0(V/L)^{0.5}$	Gates, 1963 Gates, Papian, 1971
а) перпендикулярный и б) параллельный ветру Побег <i>Picea pungens</i>	$\begin{array}{c} 20.4 + 2.79V^{0.75} \\ 20.4 + 1.75V^{0.75} \end{array}$	Tibbals и др., 1964
a) $V \le 30 \text{ cm} \cdot \text{c}^{-1}$ 6) $V \ge 30 \text{ cm} \cdot \text{c}^{-1}$ $\square \text{of } Pinus ponderosa$	${20,0+0,2V^{0,97}\atop 0,95V^{0,97}}$	" " " " " " " " " " " " " " " " " " "
независимо от ориентации	18,0+0,71V	Gates и др., 1965

водяного пара $(c \cdot c m^{-1})$. Последнее зависит от толщины пограничного слоя (d) и коэффициента диффузии (D_w) :

$$r_a = \frac{d}{D_w}$$
.

Теплопередача через пограничный слой зависит, кроме молекулярной диффузии, от турбулентного переноса. Поэтому сопротивления переноса тепла (r'_a) и водяного пара (r_a) между воздухом и параллельной воздушному потоку пластинкой обратно пропорциональны (как при молекулярной диффузии). Соотношение коэффициентов диффузии тепла (D_h) и водяного пара (D_w) приобретает степень 0,66 (Monteith, 1954; Gale, Poljakoff-Mayber, 1968; Cowan, Troughton, 1971; Jarvis, 1971):

$$r'_a = r_a \cdot \left(\frac{D_h}{D_w}\right)^{0.66} \left(c \cdot \text{cm}^{-1}\right).$$

По Р. Слейчеру (1970), при Т = 20° и p=760 мм pт. cт. $D_h=0.22$ и $D_w=0.24$ cм²•c-1.

Таким образом, $r'_a = 1,05 r_a$.

$$h_c = \frac{c_p \cdot Q_a}{r'_a},$$

где c_p — удельная теплоемкость (=0,242 $\kappa a \Lambda \cdot e^{-1} \cdot K^{-1}$), Q_a — плотность воздуха (1,19·10⁻³ $e \cdot c M^{-3}$), h_c = 2,75·10⁻⁵· r_a^{-1} ($\kappa a \Lambda \cdot c M^{-2} \cdot M u H^{-1} \cdot K^{-1}$).

Методика и объект исследования

Из изложенного вытекает, что определение как h_c так и r'_a сокращается за счет установления r_a . Для этого мы пользовались методом, предложенным Дж. Дж. Ландсбергом и М. М. Лудлоу (Landsberg, Ludlow, 1970). Побег ели окунали в раствор гипса, встряхивали для удаления лишнего раствора и высушивали. Подготовленный побег прикрепляли к крючку аналитических весов (OWALABOR, точность 0,1 мг), тянувшемуся в ветровую камеру, и намачивали дистиллированной водой. Перед включением воздушного потока удаляли лишние капли воды фильтровальной бумагой.

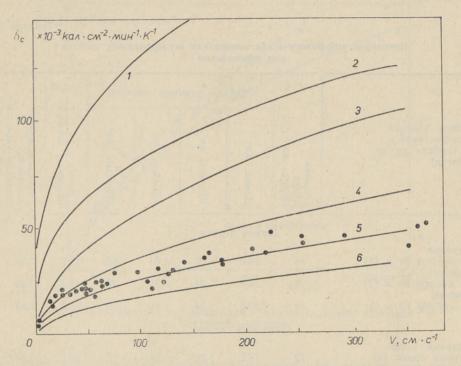


Рис. 1. Зависимость коэффициента конвекции для некоторых геометрических тел (по табл. 1). 1 и 2 — цилиндры диаметром соответственно 1 и 2 m, 3, 4, 5 и 6 — пластины размером соответственно 1×1 , 2.5×2.5 , 5×5 и 10×10 c. Точками указаны определенные по скорости испарения h_c для пластины 5×5 c.

Скорость потока измеряли термоанемометром, влажность воздуха — термоэлектрическим психрометром, температуру испаряющей поверхности — тонкими медно-константановыми термопарами (диаметр проводов 0,05 мм). Проверкой метода служил опыт по испарению с пластинок оргстекла, покрытых слоем гипса. Как видно по рис. 1, найденный таким методом коэффициент конвекции довольно хорошо совпадает с данными из литературы, полученными путем теплотехнических измерений (Gates, 1965; см. табл. 1). Большое рассеивание

точек обусловлено, видимо, малой точностью определения плотности водяного пара психрометрическим методом, а также трудностями под-

держивания константным потока воздуха при малых скоростях.

В эксперименте с побегами ели дополнительным источником погрешности является лишь приблизительное определение испаряющей поверхности. Площадь хвои определяли по формуле Иванова (см. Гулидова, 1959) путем измерения толщины, ширины и длины хвоинок (приняв сечения хвоинок ромбовидными). У каждого изучаемого побега измеряли по 10 хвоинок, т. е. 8—15% всех хвоинок, Толщину слоя гипса измеряли на срезах хвоинок, залитых в эпоксидную смолу. При аккуратной работе толщина слоя не превышает 0,1 мм, площадь побега за счет гипса увеличивается на 10—20%.

Эксперимент был проведен на Лесной экологической станции Вооремаа ИЗБ АН ЭССР в 1979—1980 гг. Объектом исследования служили ель из 90-летнего насаждения высотой 37 м и ель того же возраста, растущая на открытой поляне. С обоих деревьев из разных частей кроны выбирали морфологически различающиеся побеги

(табл. 2).

Таблица 2

Некоторые морфологические показатели исследованных побегов ели европейской

		Средние размеры хвоинок					
Побеги, условия произрастания (в скобках число побегов)	роизрастания в скобках число	Длина, мм	Ширина, мм	Толщина, мм	Площадь, мм²	Густота охвоения, <i>шт.см</i> -1	Пространственная плотность площади хвон, см-1
The same of the sa	J.	Іесное д	ерево				True I
Световые, с высоты 30 м (4)	68	20,0	1,30	1,04	67	18,0	2,25
Световые, с высоты 28 м (2)	68	22,8	1,34	1,10	78	19,4	1,46
Теневые, с высоты 12 м (5)	47	20,4	1,54	1,10	70	13,8	1,53
	Оді	ночное	дерево				
Световые, с вер- хушки кроны (3) Теневые, из внут-	72	18,2	1,20	1,08	59	20,7	1,68
ренней части кроны (3)	47	15,1	1,18	0,77	43	14,0	1,58

Массо- и энергообмен хвоинок происходит через поверхность. Поэтому весьма интересным показателем является пространственная плотность площади хвои на побеге. Этот комплексный показатель характеризует (учитывая величину, форму и расположение хвоинок относительно оси побега) морфоструктуру (пространственное строение) побега. Практическое определение этой величины оказывается весьма неточным из-за трудностей определения объема побега. Однако, для первоначальных оценок пространственная плотность площади хвои кажется весьма информативным показателем, который тесно связан с коэффициентом переноса.

Результаты и обсуждение

Результаты определения h_c приведены на рис. 2 и 3. В общем изреженные теневые побеги продуваются лучше, чем густые световые, у которых взаимозатеняющий эффект хвоинок выражен сильнее. Поэтому коэффициент h_c у теневых побегов немного больше, чем у световых. Величины h_c отдельных побегов могут варьировать в довольно широких пределах (рис. 2). На рис. 3 приведены средние экспериментальные функции $h_c = f(V)$ для побегов различной морфоструктуры. По характеру конвективного переноса световые побеги похожи на цельный лист длиной 2 cm, теневые же побеги соответствуют листовой пластинке меньше 1 cm, приближаясь к цилиндру с диаметром 2 mm. Вариабельность пространственной плотности площади хвои была меньше у дерева, растущего на открытой местности. Соответственно и функции $h_c = f(V)$ веток для отдельно стоящего дерева были ближе друг к другу. Однако и здесь эффективная величина световых побегов оказалась больше.

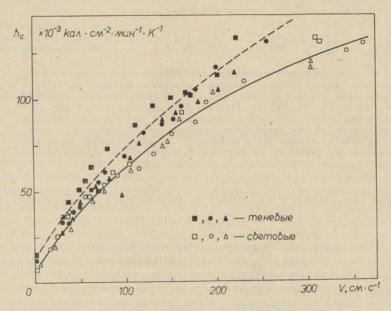


Рис. 2. Қоэффициент конвекции для шести побегов ели, растущей на открытой местности.

Существует и вторая, расчетно-компилятивная возможность определения коэффициента конвекции. Исходя из интегрального уменьшения скорости ветра в пространстве побега и принимая хвоинки как цилиндрические теплообменники, можно вычислить коэффициент конвекции при разных скоростях ветра. На рис. 3 приведена соответствующая кривая светового побега. Совпадаемость с определенным экспериментально $h_{\rm c}$ весьма хорошая.

Как видно из табл. 1, зависимость коэффициента h_c от скорости ветра тесно связана со структурой теплообменника. Чем более расчленен теплообменник или реже побег, тем линейнее становится $h_c = f(V)$. Если для широких цельных листьев в эмпирическом уравнении h_c скорость ветра находится в степени 0,5, то для сравнительно густых побегов пихты (Abies concolor) эта степень увеличивается до 0,75, а для

редких побегов сосны (Pinus ponderosa) — до 1.

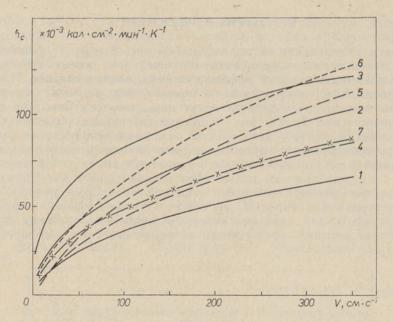


Рис. 3. Коэффициент конвекции для побегов ели, растущей в сомкнутом пологе. Для сравнения приведены функции $h_c=f(V)$ некоторых геометрических тел. I — горизонтальная пластина 2.5×2.5 см; 2 — то же, 1×1 см; 3 — цилиндр, D=2 мм; 4 — световые побеги с верхушки, среднее для 4 побегов, 5 — световые побеги из средней части кроны, среднее для 2 побегов; 6 — теневые побеги, среднее для 5 побегов; 7 — световой побег, расчетная кривая (по среднему уменьшению скорости ветра в пространстве побега).

Приняв (по Tibbals и др., 1964) за основу следующую форму функции h_c : $h_c = a + bV^c$.

мы пытались найти экспериментальные коэффициенты a, b и c методом нелинейной регрессии*. Величины коэффициентов весьма разбросаны (табл. 3), причем указатель степени меняется от 0,44 до 0,78. Последнее объясняется тем, что скорость ветра в окрестности хвоинок при повышении скорости ветра вне побега растет нелинейно. На увеличение степени при повышении скорости ветра указывает и P. Слейчер (1970). Таким образом, указанная форма функции не является удачной. В то же время лучшие для аналитического описания h_c результаты получаются при помощи квадратной функции (вычисления проведены K. Лыхмус).

Следует отметить, что применение квадратной формулы ограничивается определенным диапазоном скоростей ветра (в наших опытах до $350 \ cm \cdot c^{-1}$). Свободная конвекция (член a), а также подъем кривой (b) у световых побегов меньше (табл. 4). Это опять-таки указывает на их меньшую продуваемость, т. е. на увеличение эффективиого диаметра. Высокие значения коэффициента множественной корреляции k указывают на пригодность использованной аналитической формулы.

Как объяснить увеличение эффективного диаметра световых побегов по сравнению с диаметром теневых? На примере отдельных деревьев (Vogel, 1968), а также всего лесного сообщества (Parkhurst, Loucks, 1972) показаны обратные тенденции — уменьшение диаметра и повышение расчлененности верхних, световых листьев. По характеру

^{*} Программа вычисления разработана Л. Маслениковой (1979).

Коэффициенты функции $h_c = a + bV^c$, найденные методом нелинейной регрессии

Побеги	Побеги Число побегов		ь	С
Световые Теневые	7 7	-2,9-13,6 $-12,8-18,4$	2,4—11,1 1,2—12,1	0,44—0,70 0,44—0,78

Таблица 4

Коэффициенты функции $h_c = a + bV - cV^2$, найденные методом множественной линейной регрессии

Побеги	Число побегов	а	b	$c(\times 10^{-4})$	k
	Лесно	е дерево			
Световые, с высоты 30 м	4	7,1	0,42 0,49	5,8	0,975
Переходные, с высоты 20 <i>м</i> Теневые, с высоты 17 <i>м</i>	2 5	8,1 12,7	0,49	9,6 5,9	0,988 0,945
	Одиночн	ое дерево			
Световые	4	13,0	0,56	5,7	0,991
Теневые	3	14,7	0,62	6,9	0,972

конвективного теплообмена и теневые, и световые побеги являются одинаково «мелкими листьями». Кроме теплопередачи в энергообмене надо учитывать эффективную площадь, поглощающую радиацию. Побеги, расположенные ниже или во внутренних частях кроны, должны для сохранения положительного баланса углекислого газа иметь структуру, обеспечивающую хорошую вентиляцию, а также максимальное поглощение радиации. Световые же побеги произрастают в благоприятных условиях радиации, так что каждый отдельный побег может достигать (генетически определенной) максимальной густоты охвоения, не понижая уровень светового насыщения.

Вышеуказанное объяснение, однако, нуждается в экспериментальной проверке путем изучения световых кривых на уровне отдельных

хвоинок. Последнее пока методически неосуществимо.

ЛИТЕРАТУРА

 Γ у л и д о в а И. В. Определение поверхности хвои у ели. — Сообщ. Ин-та леса АН СССР, 1959, 11, 49—50.

Клешнин А. В., Шульгин И. А. О транспирации и температуре листьев растений в условиях солнечного освещения. — В кн.: Водный режим растений в связи с обменом веществ и продуктивностью. М., 1963, 111-120.

Масленикова Л. Нелинейный регрессионный анализ для мини ЭВМ «Наи-ри-2». Тарту, 1979. (Дипломная работа хранится на кафедре вычислительной математики ТГУ.)

Слейчер Р. Водный режим растений. М., 1970.

Cowan, I. R., Troughton, J. H. The relative role of stomata in transpiration and assimilation. — Planta, 1971, 97, 325—336.

Gale, J., Poljakoff-Mayber, A. Resistances to the diffusion of gas and vapour in leaves. — Physiol. Plant., 1968, 21, 1170—1176.

Gates, D. M. Leaf temperature and energy exchange. — Arch. Met. Geoph. Biokl., Ser. B, 1963, 12, 321—336.

Gates, D. M. Heat transfer in plants. - Sci. Amer., 1965, 213, 76-84.

Gates, D. M., Benedict, C. M. Convection phenomena from plants in still air. — Amer. J. Bot., 1963, 50, 563—573.

Gates, D. M., Tibbals, E. C., Kreith, F. Radiation and convection for Ponderosa pine. - Amer. J. Bot., 1965, 52, 66-71.

Gates, D. M., Papian, L. E. Atlas of Energy Budgets of Plant Leaves, London-

New-York, 1971.

Incropera, F. P. Leaf photosynthesis: the influence of environmental variables. —
J. Environm. Qual., 1975, 4, 440—447.

Jarvis, P. G. The estimation of resistance to carbon dioxide transfer. — In: Plant photosynthetic production. Manual of methods. The Hague, 1971, 567—631.

Knoerr, K. R., Gay, L. W. Tree leaf energy balance. — Ecology, 1965, 46,

17-24.

Kreith, F. Principles of heat transfer. International Textbook Co., Scranton, Pa. 1958.

Landsberg, J. J., Ludlow, M. M. A technique for determining resistance to mass transfer through the boundary layers of plants with complex structure. — J. Appl. Ecol., 1970, 7, 187-192.

Appl. Ecol., 1970, 7, 187—192.

Monteith, J. L. Error and accuracy in thermocouple psychrometry. — Phys. Soc. Proc., B, 1954, 67, 217—221.

Parkhurst, D. F., Loucks, O. L. Optimal leaf size in relation to environment. — J. Appl. Ecol., 1972, 60, 505—537.

Tibbals, E. C., Carr, E. K., Gates, D. M., Kreith, F. Radiation and convection in conifers. — Amer. J. Bot., 1964, 51, 529—538.

Vogel, S. «Sun leaves» and «shade leaves»: differences in convective heat dissipation. — Ecology, 1968, 49, 1903, 1904.

Ecology, 1968, 49, 1203-1204.

Инститит зоологии и ботаники Академии наук Эстонской ССР Поступила в редакцию 23/IV 1981

Andres KOPPEL

HARILIKU KUUSE KONVEKTIIVNE SOOJUSVAHETUS

Artiklis on käsitletud hariliku kuuse võrsete konvektiivset soojusülekannet. Konvektsioonikoefitsiendi sõltuvust tuule kiirusest kirjeldab küllalt hästi ruutvõrrand, kirjandusest teadaoleva c-astmefunktsiooni $h_c = a + b \, V^c$ kasutamine pole astendaja c muutlikkuse tõttu sobilik. Konvektiivse soojusülekande poolest vastavad valgusvõrsed 2-cm-se, varjuvõrsed aga alla 1-cm-se läbimõõduga lihtlehtedele. Võrsete morfostruktuuri muutlikkus ei avalda seega konvektiivsele soojusvahetusele märkimisväärset mõju. On antud eri tüüpi võrsete konvektsioonikoefitsiendi analüütiline kuju.

Andres KOPPEL

ON INVESTIGATION OF CONVECTIVE HEAT EXCHANGE IN NORWAY SPRUCE SHOOTS

The convective heat exchange of Norway spruce shoots was investigated. Relationship between the convection coefficient and wind-speed can be described by the equation $h_c = a + bV - cV^2$ where a, b and c are empirical constants. By the peculiarities of convective heat dissipation, the sun shoots correspond to a single leaf with a diameter of 2 cm; the effective diameter of shade shoots is less than 1 cm. The analytical form for $h_{\rm c}$ in relation to wind-speed for different shoot types is

given

We conclude that the morphostructure of spruce shoots has no adaptive value in connection with their convective energy exchange.