LÜHITEATEID * КРАТКИЕ СООБЩЕНИЯ

EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. 23. KÖIDE BIOLOOGIA. 1974, NR. 1

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 23 БИОЛОГИЯ. 1974, № 1

https://doi.org/10.3176/biol.1974.1.06

УДК 612.42+591.85

ЭВА АЙНСОН

ДИНАМИКА КОНЦЕНТРАЦИИ НЕКОТОРЫХ ЛИПИДОВ В КРОВИ И ЛИМФЕ ОВЕЦ ПОСЛЕ ИНЪЕКЦИИ АКТГ

EVA AINSON. LIPHIDIDE MÕNINGATE FRAKTSIOONIDE KONTSENTRATSIOONI DÜNAA-MIKA LAMMASTE VERES JA LÜMFIS PEALE ACTH SÜSTIMIST

EVA AINSON. ÜBER DIE DURCH ACTH BEWIRKTEN VERÄNDERUNGEN DER KONZEN-TRATION EINIGER LIPOIDFRAKTIONEN IM BLUTE UND IN DER LYMPHE DER SCHAFE

Известно, что адренокортикотропный гормон гипофиза обладает четко выраженным тропным действием на кору надпочечников, стимулирует ее гормональную и в первую очередь глюкокортикотропную активность. Результаты некоторых исследований говорят о том, что воздействие гипофиза на надпочечники происходит через образование 3,5-АМФ, который в свою очередь активизирует образование фосфорилазы (Rapoport, 1969).

Считается, что действие системы АҚТГ—кора надпочечников состоит в стимуляции образования углеводов из жиров. При этом АКТГ и кортизон мобилизуют периферические жировые депо и направляют жиры в соответствующие органы, прежде всего в печень (Лейтес, 1956; Зекфорт, 1962; Лейтес, Лаптева, 1967).

Зависимость действия АКТГ от вида животных (Ганелина и др., 1965) в определенной мере ограничивает возможности сравнения результатов, полученных от животных разных видов, и требует исследования видовой специфики при помощи опытов по изучению влияния АКТГ на метаболизм жиров в организме животных. Хочется надеяться, что наши опыты по изучению влияния экзогенного АКТГ на концентрацию некоторых липидов в крови и лимфе помогут выявлению сложных механизмов эндокринной регуляции жирового обмена у овец.

Материал и методика

Опыты проводились в Институте экспериментальной биологии АН Эстонской ССР на овцах с хроническим лимфо-венозным анастомозом. В пробах лимфы и крови, взятых параллельно до и через 150, 300 и 420 *мин* после внутримышечного введения 40 ЕД АКТГ, определялись: общий жир по гравиметрическому методу Франке, эфиросвязанные жирные кислоты по методу Хоржейши и сотрудников, общий холестерин по модифицированному методу Мрскоса и Товарека и β-липопротеиды турбидиметрическим методом по Бурштейну в модификации Климова и сотрудников. Все животные до опыта содержались в течение 12 *ч* на голодной диете.

Результаты исследований

После введения АКТГ наметились некоторые сдвиги в концентрации исследованных липидных фракций. Анализ полученных данных показал, что наиболее существенным из них было снижение концентрации общего холестерина и β -липопротеидов в сыворотке крови (P < 0,05). Что касается общего количества липидов и содержания эфиросвязанных жирных кислот в крови, то в них было установлено не достаточно статистически достоверное снижение. Следует отметить, что изменения в концентрации липидов лимфы выражались в тенденции к снижению; меньше соответствующих сдвигов было в количестве общего холестерина и β -липопротеидов крови (P < 0,05).

Обсуждение результатов

Полученные данные показали (см. таблицу), что влияние АКТГ на фракции липидов крови и лимфы различно. Из литературы известно (Лейтес, Лаптева, 1967), что АКГТ содействует отщеплению от холесте-

Фракции липидов	До инъекции АКТГ		Срок после инъекции АКТГ, мин					
			150		300		420	
	в крови x±Sx	в лимфе х±Sх	в крови х±Sх	в лимфе х±Sх	в крови х±Sх	в лимфе х±Sх	в крови х±Sх	в лимфе х±Sx
Эфиросвя- занные жирные	matoczw.	THAT		TATION DE	альная плеяь ч	NYTESI	-	renocti
кислоты	271 ± 19	484 ± 24	276 ± 17	425 ± 29	249 ± 12	495 ± 39	364 ± 85	407 ± 63
Общий жир	256 ± 14	493±23	273 ± 20	459 ± 31	261 ± 21	463 ± 21	247 ± 19	485 ± 25
Общий хо- лестерин	75±5	75±7	61±9	70±4	60 ± 5	64±6	73±5	78±10
β-липопро- теиды	156 ± 21	264 ± 29	100±4	250 ± 13	107±8	218 ± 18	135 ± 12	223 ± 13

Влияние АКТГ на липидный состав крови и лимфы овец, мг%

рина боковой цепи и тем самым активизирует превращение его в специфические стероиды надпочечников. Это дает основание предполагать, что в наших опытах снижение уровня общего холестерина в крови и лимфе связано с увеличением его употребления для синтеза гормонов надпочечников. Возможной причиной снижения уровня холестерина в крови может быть и интенсификация его выделения через печень.

Известно, что для синтеза β-липопротеидов используются главным образом β-глобулины и холестерин крови (Асатиани, 1964) и что у жвачных, кроме печени, значительная часть β-липопротеидов синтезируется в стенке пищеварительного канала (Сбродов, 1971). Поэтому возможно, что возникший под влиянием АКТГ дефицит холестерина в крови значительно замедляет синтез β-липопротеидов и их лимфо-кровную циркуляцию.

Поскольку в образовании лимфы грудного протока большое значение имеет лимфа из пищеварительного тракта, в ее составе отражаются и возникающие в результате деятельности последнего изменения. Следует

полагать, что под влиянием АКТГ запасы холестерина из стенок пищеварительного канала в наших опытах расходовались не полностью, в результате чего изменения в количестве в-липопротеидов и холестерина лимфы были значительно меньше соответствующих в крови.

ЛИТЕРАТУРА

Асатиани В. С., 1964. Биохимический анализ. Тбилиси.

Ганелина И. Е., Комарова И. А., Криворученко И. В., Липовец-кий Б. М., 1965. Обмен липидов и артеросклероз. М.-Л.

Зекфорт Н., 1962. Эндокринная система и липиды крови. Тр. V международ. биохим. конгресса. Симпознум 7. М : 134—156. Лейтес С. М., 1956. Роль АКТГ и кортизона в процессах компенсации нарушений

обмена веществ. Арх. патол. 6: 315-321.

Лейтес С. М., Лаптева Н. Н., 1967. Очерки по патофизиологии обмена вешеств и эндокринной системы. М.

Сбродов Ф. М., 1971. Обмен бета-глобулинов, холестерина и бета-липопротеидов между кровью и пищеварительной системой у овец. Физиол. ж. СССР им. И. М. Сеченова. 8 : 1157—1160.

Rapoport S. M., 1969. Medizinische Biochemie. Berlin.

Институт экспериментальной биологии Академии наук Эстонской ССР

Поступила в редакцию 7/III 1973

EESTI NSV TEADUSTE AKADEEMIA TOIMETISED, 23. KÖIDE BIOLOOGIA, 1974, NR. 1

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 23 БИОЛОГИЯ. 1974, № 1

УДК 575:143

ЯАК КАЛЬДМА

РЕКОМБИНАЦИЯ МИТОХОНДРИАЛЬНЫХ МАРКЕРОВ УСТОЙЧИВОСТИ К АНТИБИОТИКАМ У ДРОЖЖЕЙ В ЗАВИСИМОСТИ ОТ ТИПА СПАРИВАНИЯ РОДИТЕЛЬСКИХ ШТАММОВ

JAAK KALDMA. PÄRMSEENTE MITOKONDRIAALSETE ANTIBIOOTIKUMIRESISTENTSETE MARKERITE REKOMBINATSIOON SÕLTUVALT VANEMTÜVEDE PAARUMIS-TÜÜBIST

JAAK KALDMA. THE STUDY ON RECOMBINATION OF CYTOPLASMICALLY INHERITED MITOCHONDRIAL ANTIBIOTIC-RESISTANCE MUTATIONS IN YEAST SACCHARO-MYCES CEREVISIAE IN RELATION TO PARENTAL MATING TYPE

Цель настоящей работы — генетическое изучение передачи и рекомбинации митохондриальных мутаций устойчивости к эритромицину и неомицину в зависимости от типа спаривания родительских штаммов, поскольку литературные данные по этому вопросу противоречивы.

Материалом служили гаплоидные изогенные штаммы дрожжей Saccharomyces cerevisiae генотипов: $a ad_1 [E^R N^R p^+]; a ad_1 [E^R N^R p^+];$ a $ad_{2}his_{8}$ [$E^{s}N^{s}p^{+}$]; a $ad_{2}his_{8}$ [$E^{s}N^{s}p^{+}$].

Для генотипов приняты обозначения: *а* и *а* — аллели локуса типа спаривания: ad1, ad2 — неаллельные мутации потребности в аденине; his8 — мутации потребности в гистидине; [ER] — митохондриальная мутация устойчивости к эритромицину, [E^s] — ее нормальная аллель