EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. XV KÖIDE BIOLOOGILINE SEERIA. 1966, Nr. 1

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ XV СЕРИЯ БИОЛОГИЧЕСКАЯ. 1966, № 1

https://doi.org/10.3176/biol.1966.1.04

Т. ПЯРНИК, О. КЕЭРБЕРГ

УСОВЕРШЕНСТВОВАННАЯ КАМЕРА ДЛЯ КРАТКОВРЕМЕННЫХ ЭКСПОЗИЦИЙ ЛИСТЬЕВ В АТМОСФЕРЕ РАДИОАКТИВНОГО УГЛЕКИСЛОГО ГАЗА

При изучении первичных продуктов фотосинтетической ассимиляции CO₂ необходимы, как известно, кратковременные экспозиции листьев в атмосфере ¹⁴CO₂. Вместе с тем требуется, чтобы экспозиция проводилась в контролируемых условиях, причем в первую очередь необходимо следить за температурой, освещением и концентрацией CO₂.

Физиологические основы и методика экспонирования листьев в атмосфере ¹⁴CO₂ обстоятельно изложены в работе О. Заленского и соавторов (1955), но описанные ими камеры не могут быть использованы для изучения кинетики включения меченого углерода в продукты фотосинтеза при коротких экспозициях.

При конструировании камер для коротких экспозиций технически наиболее трудно обеспечить введение листа, находящегося в состоянии стационарного фотосинтеза, в атмосферу ¹⁴CO₂ и быстрое его выведение для немедленной фиксации.

Многие исследователи используют камеры, которые герметически закрываются снизу пластинкой (Bean, Hassid, 1955; Towers, Mortimer, 1956; Galmiche, 1963; Моиз, 1959). Широко применяются также различные ртутные камеры (Доман, 1959; Кузин, Саенко, 1959; Шлык и др., 1962; Мокроносов, 1962). Ртутные камеры позволяют быстро вводить и выводить лист, несложны по конструкции и экономны, так как потери ¹⁴CO₂ практически отсутствуют. При помощи такой камеры Н. Доману (1959) удавалось проводить полусекундные экспозиции.

При изучении включения ¹⁴С в отдельные продукты фотосинтеза очень важно, чтобы лист при экспозиции находился в условиях, близких к естественным. Кроме того, необходимо иметь возможность предварительно держать лист в таких же условиях освещения, температуры и концентрэции СО₂, которые имеются в камере, чтобы установилось стационарное состояние фотосинтеза — «steady state».

Камера для кратковременных экспозиций должна удовлетворять следующим требованиям:

1. Позволять быстро вводить лист в атмосферу с ¹⁴CO₂ и быстро выводить его.

2. Иметь контролируемые условия освещения.

3. Иметь устройство для регуляции температуры.

4. Обеспечивать нормальное снабжение листа углекислотой.

5. Давать возможность предварительно при соответствующей температуре и концентрации CO₂ освещать лист таким же светом, какой имеется в камере. Поскольку существующие камеры лишь частично удовлетворяют перечисленным требованиям, представлялось необходимым усовершенствовать их и присоединить не которые добавочные системы.

Усовершенствованная нами камера (рис. 1), размеры которой 8×8×4 см, позволяет экспонировать небольшие листья или диски из листьев. Она изготовлена из органического стекла. Лист, закрепленный в держателе, вводится в камеру через ртуть при помощи особого рычага, который позволяет при экспонировании точно фиксировать положение листа в отношении светового пучка. Оперируя рычагом с держателем, через 0,8-1,0 сек после экспозиции лист погру-

Рис. 1. А — Фотосинтетическая камера. Б — Ванна с ртутью.

1 — лист или диск из листа в держателе, 2 — рычаг, 3 — термосопротивление, 4 — водяной радиатор, 5 — трубки для циркуляции газа, 6 — воронка и сосудик для зарядки камеры ¹⁴CO₂.

жают в фиксирующую среду. Можно проводить даже секундные экспозиции, при этом от начала экспозиции до начала фиксации проходит не более двух секунд. Камера позволяет работать и с более длинными экспозициями — до 10—15 минут и более. Постоянная концентрация CO₂ в ней при длительных экспозициях обеспечивается специальной системой достаточно большого объема для циркуляции газа. Для генерации ¹⁴CO₂ в камере помещена небольшая чашечка для Ва¹⁴CO₃, в которую поступает кислота из воронки. Водяной радиатор из медных трубок служит регуля-

Рис. 2. Схема освещения (вид сверху): 1 — ванна с ртутью, 2 — фотосинтетическая камера, 3 лист в камере, 4 — лист при предварительном освещении, 5 — зеркало, 6 — прожекторная лампа, 7 — конденсор, 8 — жидкостный фильтр, 9 — фильтры из цветных стекол, 10 — пластинка из органического стекла, 11 — пиранометр Янишевского.

тором температуры в камере во время экспозиции. Регулируя скорость тока воды в радиаторе, можно поддерживать в камере температуру, близкую к комнатной, при которой лист находится в период предварительного освещения. Контроль за температурой осуществляется при помощи термосопротивления. Для освещения листа (рис. 2) используется прожекторная лампа мощностью 500 вт. При помощи зеркала и конденсора можно получить от этой лампы свет в видимой области спектра (400—750 ммк) с интенсивностью до 7,85×10⁵ ^{эрг} см²сек. Инфракрасная радиация снимается пятисантиметровым слоем однопроцентного раствора медного купороса в дистиллированной воде. При необходимости работать со светом определенного спектрального состава и различной интенсивности можно до-полнительно использовать фильтры из цветного стекла или нейтральные

Рис. 3. Схема добавочных систем к фотосинтетической камере: 1 — фотосинтетическая камера, 2 — газгольдер, 3 — мембранный насос, 4 — торцовый счетчик, 5 фильтр с 20%-ным КОН, 6 — насос, 7, 8 — трубки для продувания системы, 9 — трехходовые краны. фильтры различной оптической плотности. В период предварительного освещения лист находится за камерой. Уменьшение интенсивности света вследствие поглощения его задней стенкой камеры составляет около 6,9% от освещенности в камере, что не оказывает существенного влияния на результаты опытов.

Интенсивность света измеряется при помощи пиранометра Янишевского. При измерении ванну с ртутью и фотосинтетическую камеру отодвигают в сторону, при этом на то место, где находился лист, перемещается жестко соединенный с ванной пиранометр. Пластинка из органического стекла перед пиранометром имитирует первую стенку камеры, что обеспечивает равную интенсивность света, падающего на поверхность листа и на приемную поверхность пиранометра. Таким способом

можно быстро и в любое время проверить освещенность на поверхности листа.

Система для циркуляции газа (рис. 3), с которой соединена камера, состоит из газгольдера (бутыль объемом 19,8 л), мембранного насоса и торцового счетчика. Общий объем системы — 20,3 литра. Мембранный насос создает в системе циркуляцию газа со скоростью 0,7 л/мин. Перед началом работы замкнутая газовая система очищается от СО₂ путем продувания через фильтр 20%ным раствором ҚОН. Продувание осуществляется не мембранным, а другим, более мощным насосом, присоединенным к системе.

Для зарядки камеры и всей газовой системы ¹⁴CO₂ берется такое количество Ва¹⁴CO₃, которое обеспечивает получение концентраций ¹⁴CO₂ в пределах 0,03—0,06%. Большой объем системы позволяет провести много экспозиций без существенного снижения концентрации CO₂. Так, если допустить, что скорость фотосинтеза при экспозиции будет составлять даже 20 - СО₂, то можно

Рис. 4. Схема прибора для контроля за изменениями концентрации углекислоты: *I* счетчик СБТ-9, *2* — уплотнение, *3* — газовое пространство, *4* — соединительные трубки, *5* — корпус из органического стекла.

будет составлять даже $20 \frac{M^2 CO_2}{\partial M^2.4ac}$, то можно провести 130 минутных экспозиций дисков из листьев площадью 4,5 cM^2 , причем коцентрация CO₂ снизится не более, чем на 10%. Для дополнительной зарядки системы в процессе работы имеется возможность отключать от нее камеру и, очистив ее от остатков радиоактивного газа, ввести новую порцию Ba¹⁴CO₃.

Рис. 5. Поглощение ¹⁴CO₂ дисками из листьев в камере при экспозициях различной продолжительности (по радиоактивности 5 дисков).

Контроль за радиоактивностью газа в системе осуществляется при помощи торцового счетчика (рис. 4). В связи с тем, что в опытах используется газ с высокой удельной радиоактив-

Рис. 6. Снижение радиоактивности газа в «малой системе» в течение экспозиции за счет поглощения ¹⁴CO₂ диском из листа фасоли. ностью — 440 <u>мкюри</u>, газовое пространство перед окном счетчика сделано минимальным. Этим обеспечивается строгая пропорциональность между скоростью счета и концентрацией ¹⁴CO₂.

В случае необходимости, отключив газгольдер и используя небольшую по объему (350 см³) газовую систему, состоящую из камеры, счетчика и мембранного насоса, можно по уменьшению радиоактивности газа определить количество поглощенной ¹⁴CO₂.

Описанная камера была использована нами для изучения продуктов фотосинтетической ассимиляции CO₂ при секундных, а также более длительных экспозициях. В то же время мы измеряли общую активность поглощенного ¹⁴CO₂

для определения интенсивности фотосинтеза. Изучение поглощения ${\rm ^{14}CO_2}$

листом, находящимся в состоянии стационарного фотосинтеза, показало, что условия в камере постоянны и обеспечивают нормальный фотосинтез в течение 10 минут и более (рис. 5 и 6). При исследовании интенсивности ассимиляции ¹⁴CO₂ в зависимости от освещенности получена типичная световая кривая фотосинтеза (рис. 7).

Результаты, полученные при испытании камеры, а также опыт ее практического использования показывают, что она удовлетворяет перечисленным в начале статьи требованиям и вполне пригодна для изучения продуктов фотосинтетической ассимиляции СО₂ при кратковременных экспозициях.

Рис. 7. Поглощение ¹⁴CO₂ дисками из листьев фасоли в зависимости от освещенности при трехминутных экспозициях (по радиоактивности 5 дисков).

ЛИТЕРАТУРА

Доман Н. Г., 1959. Основные черты ассимиляции углерода при фотосинтезе. В сб. : Проблемы фотосинтеза. Изд. АН СССР, М. : 294.

Заленский О. В., Семихатова О. А., Вознесенский В. Л., 1955. Методы применения радиоактивного углерода С¹⁴ для изучения фотосинтеза. Изд. АН СССР, М.—Л. Моиз А., 1959. Некоторые аспекты фотосинтеза в связи с метаболизмом органических кислот и аминокислот. Физиол. растений, 6 : 274.

Мокроносов А. Т., 1962. Особенности фотосинтеза у картофеля в утренние, дневные и вечерние часы при разных фотопериодах. Зап. Свердловск. отд. Всес. ботан. о-ва, 2: 67.

Кузин А. М., Саенко Г. Н., 1959. О природе веществ, фиксирующих CO₂ в процессе фотосинтеза. В сб.: Проблемы фотосинтеза. Изд. АН СССР, М.: 302,

Шлык А. А., Гапоненко В. И., Кухтенко Т. В., 1962. Кинетика С¹⁴ при обновлении хлорофилла в растениях ячменя и табака. Физиол. растений, **9** : 521.

Bean R. C., Hassid W. Z., 1955. Assimilation of C¹⁴O₂ by a photosynthesizing red alga, *Iridophycus Flaccidum*. J. Biol. Chem., 212 : 411.

Galmiche J., 1963. Influence de différentes longueurs d'onde de la lumiére sur la distribution du carbone-14 dans les premiers produits de la Photosynthése en utilisant des temps d'absorption très courts du ¹⁴CO₂ per des feuilles de tomate. La Photosynthése, Colloques Internationaux du Centre National de la Recherche Scientifique, (119) : 589.

Towers G. H. N., Mortimer D. C., 1956. The role of keto acids in photosynthetic carbon dioxide assimilation. Can. J. Biochem. Physiol., 34: 511.

Институт экспериментальной биологии Академии наук Эстонской ССР Поступила в редакцию 4/VIII 1965

T. PÄRNIK, O. KEERBERG

TÄIUSTATUD KAMBER TAIMELEHTEDE LÜHIAJALISEKS EKSPONEERIMISEKS RADIOAKTIIVSE SÜSIHAPPEGAASI KESKKONNAS

Resümee

Täiustati taimelehtede või leheketaste eksponeerimiseks ¹⁴CO₂ keskkonnas kasutaiavate elavhõbedakambrite konstruktsiooni.

Kambris on võimalik teostada nii sekundilisi kui ka pikemaid (10—15-minutilisi) ekspositsioone, kusjuures temperatuur, valgustus ja ¹⁴CO₂ kontsentratsioon on kontrollitavad ning reguleeritavad.

Temperatuuri reguleerimiseks on kambrisse paigutatud radiaator, milles tsirkuleerib vesi. Temperatuuri kontrollitakse termotakistiga.

Valgustamiseks kasutatakse 500 W prožektorilampi, mille abil saadakse spektri nähtavas piirkonnas (400—750 mµ) valgus intensiivsusega $7.85 \times 10^5 \frac{\text{erg}}{\text{cm}^2 \text{ sek.}}$. Valguse spektraalset koostist ja intensiivsust muudetakse klaas- ja vedelfiltritega. Valguse intensiivsust mõõdetakse Janiševski püranomeetriga.

¹⁴CO₂ sisaldava anumaga on kamber ühendatud kraanidest, pumpadest ja filtrist koosneva süsteemi kaudu, mis tagab gaasi tsirkulatsiooni kambris ja vajaduse korral võimaldab puhastada süsteemi osi ¹⁴CO₂-st. Süsteemi suur ruumala tagab praktiliselt konstantse süsihappegaasi kontsentratsiooni ka pikematel ekspositsioonidel.

Gaasi radioaktiivsust kambris ning süsteemis kontrollitakse loendajaga. Vajaduse korral saab loendajat kasutada ka taimelehes neeldunud ¹⁴CO₂ koguse määramiseks.

Kambrit kasutatakse CO₂ fotosünteetilise assimilatsiooni primaarsete produktide uurimiseks.

Eesti NSV Teaduste Akadeemia Eksperimentaalbioloogia Instituut Saabus toimetusse 4. VIII 1965

T. PÄRNIK, O. KEERBERG

AN IMPROVED CHAMBER FOR THE SHORT EXPOSITION OF LEAVES IN THE ATMOSPHERE OF RADIOACTIVE CARBON DIOXIDE

Summary

An improved design of the mercury chamber for the exposition of leaves or leaf disks in an atmosphere containing ${}^{14}CO_2$ is described.

By the use of the chamber it is possible to carry out expositions under controlled and regulated temperature, illumination and concentration of $^{14}\mathrm{CO}_2$ from a few seconds up to 10–15 minutes.

The chamber contains a radiator with circulating cold water, by which the temperature is regulated. The temperature is controlled by a thermistor.

A 500 watt incandescent lamp serves as the source of light that gives the light intensity 7.85×10^5 erg per cm² · sec in the visible part of the spectrum (400-750 mµ). The spectral composition and the intensity of light are regulated by glass and liquid filters. Light intensity is measured by the Yanishevsky-type pyranometer.

A large vessel containing ${}^{14}\text{CO}_2$ is attached to the chamber through a system of stop-cocks, pumps and a filter which secures the circulation of the gas in the chamber and makes possible to release the parts of the system from ${}^{14}\text{CO}_2$ if necessary. The great volume of the system guarantees practically constant concentration of ${}^{14}\text{CO}_2$ even during a long exposition.

The radioactivity of the gas in the chamber and in the system is controlled by a thin window counter tube. The counter tube may be used for the estimation of the quantity of $^{14}\mathrm{CO}_2$ assimilated by the leaf.

The chamber is applied in the investigation of primary products of the photosynthetic assimilation of CO_2 .

Academy of Sciences of the Estonian S.S.R., Institute of Experimental Biology Received Aug. 4th, 1965