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Abstract. The article discusses the principles of selecting features for modelling the temporal 
structure of Estonian speech, using different types of read-out texts, with a view to text-to-
speech synthesis (TTS). Feature selection is known to depend on certain general issues 
regulating speech temporal structure, as well as on some language specific aspects. The 
durational model of Estonian stands out for some foot-bound features (foot quantity degree, 
number of feet in the word) being included in the input. In addition to the traditional 
descriptors of sound context and hierarchical position the prediction of Estonian segmental 
durations requires information on some morphological, syntactic and lexical features of the 
word, such as word form, part of sentence, and part of speech. In the prediction of pauses in 
the speech flow the relevant features are: distance from sentence beginning and from the 
previous pause, the length and quantity degree of the preceding foot, and the occurrence of a 
punctuation mark or conjunction. Although expert opinions were used in feature selection, 
statistical methods should be applied to test the vector of optimal argument features.  

Keywords: feature selection, speech timing, segmental durations, pauses, text-to-speech 
synthesis, feature significance, statistical modelling 

1. Introduction

Variability is one of the keywords of speech technology. While in speech recogni-
tion variability in the speech wave is a frequent source of trouble, insufficient 
variability in speech synthesis may lead to monotony and unnaturalness of synthetic 
speech (Tatham, Morton 2005:9). Synthetic speech cannot boast a natural temporal 
structure without successfully rendering the normal variability in the duration of 
sounds and pauses, as well as in the positioning of pauses in the speech flow. This is 
a complex task requiring an optimal choice of features to model speech timing. 
Modelling speech temporal structure is of particular interest for speech technology, 
representing an interface between the cognitive and mechanical aspects of speech 
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generation. The general aspects governing that structure derive from the human vocal 
tract and articulatory mechanisms being the same for all languages. The specific 
aspects, however, are connected with factors typical of the language and the speaker. 
It is, for example, highly probable that one and the same sound sequence as 
pronounced by two different speakers (or even by the same speaker on two different 
occasions) has different timing characteristics (Campbell 2000:281). 

Generation of synthetic speech with a prosodically appropriate temporal structure 
is never easy as speech prosody is subject to the influence of many factors, often with 
complex joint effects. Moreover, a language may bring forth a lot of factorial 
coincidence resulting in a surprising number of exceptional cases (van Santen 
1998:115). Characteristics controlling speech timing have been studied for a long 
time and in several different speech-related spheres. However, not all discoveries 
have as yet been circulated in full, neither have all factors been integrated in a single 
extensive model to be used in all relevant spheres. Even confining oneself to just one 
concrete sphere, it is hard to comprehend the underlying principles and mechanisms 
of the characteristics (Sagisaka 2003:1). 

Over the past decade the developments in speech synthesis have revealed a certain 
tendency of unification and multilingualism, which means that similar development 
systems, methods and approaches are applied to many different languages. The 
existing Estonian text-to-speech synthesizer, for example, uses the MBROLA 
synthesis engine worked out at Mons University, Belgium (Dutoit 1997:276). The 
question remains, however, to what extent unified algorithms and unified feature 
selection could be applied in speech prosody, and in particular, in the modelling of 
speech timing. 

Characteristics of segmental durations have been measured for many languages in 
order to pinpoint the universal and the specific in the timing patterns of languages 
(Sagisaka 2003:1). Speech technology has been striving to obtain precise control over 
segmental durations in order to synthesize speech with a natural-sounding rhythm 
and timing. The present paper is focused on the selection of optimal characteristics to 
model speech temporal structure for Estonian text-to-speech synthesis.  

 
 

2. Principles of feature selection for modelling timing in speech 
 
There have been three approaches in the control of speech timing: one is mora-

timed rhythm, which is used, e.g., in Japanese, the second is syllable-timed rhythm – 
every pronounced syllable is supposed to take up roughly the same amount of time, 
and the third is stress-timed rhythm, recognized and used in many Germanic 
languages. 

In Japanese, mora isochrony has been observed as a temporal constraint 
controlling vowel duration. A negative correlation has been found to exist between 
the durations of vowels and their neighbouring consonants. The fact that the temporal 
compensation of the duration of a vowel is more influenced by the duration of its 
preceding consonant is regarded as an acoustic manifestation of mora-timing. As has 
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been proved by statistical analysis, such compensation takes place in mora units, not 
in syllables (Sagisaka 2003:2). This does not of course exclude more extensive 
regulation. Speech rhythm is readjusted on phrase level - the more moras in the 
phrase, the shorter their average durations. In the end it is the mora constraints and 
the local adjustment of speech rate within phrases that determine most of the 
variation of segmental durations in read-out Japanese speech (Sagisaka 2003:2). 
Mora metrics has been applied quite successfully in Estonian phonology as well. In 
Estonian word prosody Arvo Eek has interpreted intra-foot quantity as a 
manifestation of mora isochrony, where the quantity degree is determined by the 
distribution of durations within the foot (Eek, Meister 2004:336–357). 

In a syllable-timed language, every syllable is thought to take up roughly the same 
amount of time when pronounced, though the actual duration of a syllable depends 
on the situation. Spanish and French are commonly quoted as examples of syllable-
timed languages. When a speaker repeats the same sentence many times at the same 
rate of articulation, the durations of adjacent phones display a strong negative 
correlation, i.e. any variance in the duration of a single phone is compensated in the 
adjacent phones and so the temporal sequence of articulation must be organised at 
levels higher than phoneme, e.g. syllable (Huggins 1968). The syllable-timing 
hypothesis was proposed by Campbell and Isard in statistical modelling to account 
for the interaction between higher and lower levels of timing control (Campbell and 
Isard 1991). It posits the syllable as a mediator and offers a way to map the effects of 
linguistic and semantic contexts onto the physiological constraints of speech sound 
production. By adopting a higher level framework for duration control, it overcomes 
the sparcity of data problem in the modelling of the variability in individual phone 
durations (Campbell 2000:307). 

In a stress-timed language, syllables may last different amounts of time, but there 
is a constant amount of time (on average) between two consecutive stressed syllables. 
For English the rules of speech timing were formulated by Dennis Klatt. Using the 
results of other researchers he made up 11 rules describing 84% of segment temporal 
variation in a text read out by himself (Klatt 1979). Klatt’s rule-based model has been 
modified and developed by other researchers. Jan van Santen generalized the Klatt 
rules, adding the following six factors affecting segmental durations in American 
English (van Santen 1998:123–124): 

1. phonetic segment identity (30 values), 
2. identities of surrounding segments (10), 
3. syllabic stress (3), 
4. word ‘importance’ (contrastive stress), 
5. location of the syllable in the word, 
6. location of the syllable in the phrase 

Thus the above models are centred on the stress groups (syllable stress, 
contrastive stress). Rule-based models were good enough to provide reasonable 
segment durations for most cases, yet sometimes grave mistakes occurred. The 
mistakes were often due to attempts of simultaneous application of independently 
derived rules. The advent of large databases, however, enabled the use of statistical 
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methods to predict segmental durations much more precisely. Many statistical models 
have made sound use of the parameters and features of Klatt’s rule-based model. 
Those have been applied as argument features, either directly or selectively, integrat-
ing some language-specific information. Horák, for example, introduced a special 
feature of monosyllabic words in his model of Czech durations (Horak 2005:79), and 
Vainio roped in some morphological features and part-of-speech information while 
modelling prosody for Finnish TTS (Vainio 2001:66–67). Timing control is just an 
aspect depending on language-specific features.  

 
 

3. Feature selection for Estonian TTS 
 
Chapter 2 described three basically different phonological approaches to feature 

selection for a durational model: one was based on mora metrics, the second on 
syllables and the third on stress-timing. Although certain characteristics allow for 
Estonian being included among mora-counting languages (Eek, Meister 2004:336), 
our system of features will be based on stress and quantity degree, considering the 
main characteristics of syllable and foot structure in Estonian language.  

The central unit of Estonian prosody is the foot, carrying three quantity degrees 
(Q1, Q2, Q3) as the phonologically relevant prosodic oppositions. The quantity 
degree is a suprasegmental feature resulting from the joint effect of several other 
features, one of the most important of which is the ratio of the durations of syllables 
or their components1. Estonian quantity degrees and stress are usually described in 
the framework of a prosodic hierarchy enabling to divide an utterance into 
components lying on different levels of subordination (Eek, Meister 2004:253). As 
can be seen in Fig. 1, a sentence or phrase consists of prosodic words, while the 
words, in turn, consist of feet, the feet consist of syllables and the rear is brought up 
by phonemes, making up the lowest segmental level. As in Estonian sentences, 
phrases (noun phrase, verb phrase, adverbial phrase) are often quite closely 
intertwined, we define a phrase for the present paper as a finite clause or a list 
element bounded by an intra-sentence punctuation mark or conjunction. Thus, Fig. 1 
may apply equally to either a sentence or a phrase.  

The relative position of a current phone is rendered in a hierarchic scale as 
follows: position of the phone in the syllable, position of the syllable in the foot, 
position of the foot in the word, position of the word in the phrase. In addition, as has 
been proved by previous analysis, information on sentence and word length is 
necessary.  

The next underlying principle of feature selection states that every phone has its 
intrinsic duration, while at the same time the phone is affected by its neighbouring 
phones. Intrinsic durations and phone interaction have been studied for many 
languages. Such universal linguistic phenomena are also observed in Estonian. The 
first measurements of the intrinsic durations of Estonian vowels took place about half  
                                                                 
1  The quantity degree is defined as a ratio of structural components of stressed and unstressed 

syllables in the form σstressed(nucleus+[coda]) / σunstressed(nucleus). 
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Figure 1. ‘Bees gather honey’ – hierarchical encoding of the relative position and length of a current 
speech unit. For example the phone [l] is encoded according to its position in the syllable [la] of a 
length of two phones. The position of the syllable [la] is encoded in relation to the foot [laset] with a 
length of two syllables. The foot is further assigned a code according to its place in the word 
[mesilased] etc. 

 
 

a century ago (Liiv 1961). In several later studies of intra-phone microprosodic 
variations it has been stated that in Estonian the short low vowels are about 10–
15 ms longer than the high vowels (Eek, Meister 2003:836; Meister, Werner 
2006:111). Interaction between neighbouring phones is manifested in consonant 
shortening in clusters, in particular in the neighbourhood of voiceless consonants 
(Eek, Meister 2004:267).  

The current phoneme segment is characterized by phoneme identity and phoneme 
length. In Estonian there are 9 vowel phonemes and 17 consonant phonemes (Eek, 
Meister 1999). The class and length of the left and right neighbours are also 
important. In modelling, the basic question is how many left and right neighbours 
affect the duration of a current phone. Usually their number is 1, 2 or 3. Experimental 
modelling of Estonian phone durations has shown that it takes two phonemes from 
the left (previous and previous but one) and two from the right (next and next but 
one) to achieve an optimal description of the context of a current phoneme (see 
Fig. 2). The phonemes are defined by their phoneme class (9 classes, pause included) 
and contrastive length (short vs. long). A phoneme and its context takes 10 features to 
describe, while the hierarchical position of the phoneme in the utterance is encoded 
by 5 features, some speech units (syllable stress, syllable type, foot quantity degree) 
take 3 features, and the length of higher-level units (syllable, foot, word, phrase, 
sentence) needs 5 features. There is also a binary feature referring to a punctuation 
mark. All these features (24 in all) make up a vector of basic features to serve as input 
for the durational model. Another point to consider when selecting initial features 
was their being supported by the technologies available for the Estonian language, 
enabling the features to be generated automatically from the input text. For the 
present study we have made use of a sentence builder, syllabifier, morphological 
analyzer, disambiguator a.o. modules provided by Estonian language technologists 
(Viks 2000), (Kaalep, Vaino 2001). 
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Figure 2. Encoding information on current phoneme neighbourhood  
(C – phoneme class, L – phoneme contrastive length, I – phoneme identity). 

 
 

3.1. Initial data and the modelling environment 
 

As our aim was to model speech temporal structure for a text-to-speech 
synthesizer, the analysis was based on read-out texts. A one-to-one correspondence 
between text and speech enables transition from a symbolic representation of 
prosody to an acoustic one as well as to find out to what extent, if at all, the syntactic 
structure of the written text could be related to the prosodic structure of speech.  

The training material consisted of speech passages from a CD-version of a 
mystery story (Stout 2003) read by a professional actor, speech passages from longer 
news texts read by announcers of the Estonian Radio, and speech passages from the 
BABEL Estonian phonetic database (Eek, Meister 1999). In total there were over 60 
speech samples read by 27 speakers , while the samples lasted from half to two 
minutes. All those samples were manually segmented into phones and pauses. 

The speech temporal structure was modelled statistically using the Enterprise 
Miner workspace of SAS 9.1 software (see Fig. 3 for a block diagram of the data 
processing). 
 
 

 
 

Figure 3. SAS Enterprise Miner workspace. 
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Linear regression, CART and neural networks were used as methods of pre-
diction. In modelling, the material of each speaker’s total presentation was divided 
into three parts: 50% was assigned for training the model, while 30% was used for 
data validation and the remaining 20% was meant for testing. 

 
3.2. Expert opinions 

 

After a rough selection has been made it would be quite useful to have a few 
experts give their opinions on the resulting vector of argument features as well as a 
few recommendations on possible additional features. The experts could estimate 
whether or not a feature is significant in the prediction of speech timing (e.g. seg-
mental durations), also, it would be useful to have their opinion on the possible joint 
effects of certain feature constellations. During our first experiments in statistical 
modelling we invited Estonian phoneticians and speech technologists to evaluate our 
first vector of argument features. The coincidence between their opinions and our 
preliminary results was a mere 41–65% (Mihkla, Kuusik 2005:95). Due to the interim 
accumulation of speech material, however, and the increasing volume of Estonian 
prosodic speech corpora our recent results are in better harmony with expert opinions 
(see Table 1). Part of the – still considerable – difference may be due to the fact that 
most of the ‘duration patterns’ of the phoneticians are based on measurements of 
isolated words and sentences, whereas our results draw on fluent speech. Sound  
 

 
Table 1. Expert opinions versus results of regression analysis (ExpN- N expert, Reg – results of 
regression analysis, 1 – significant explanatory variable, 0 – insignificant variable) 
 

Explanatory variable Exp1 Exp2 Exp3 Exp4 Reg 

Previous phoneme class 0 0 0 0 1 
Previous phoneme length 1 1 1 1 1 
Current phoneme identity 1 1 1 0 1 
Current phoneme length 1 1 1 1 1 
Next phoneme class 1 1 0 0 1 
Next phoneme length 1 0 1 1 0 
Phoneme position in syllable 1 1 0 1 1 
Stress of syllable 1 1 1 1 1 
Type of syllable 1 0 0 1 0 
Quantity degree of foot 1 1 1 1 1 
Syllable position in foot 1 1 1 1 1 
Length of foot in syllables 1 1 0 1 1 
Foot position in word 1 0 0 1 0 
Length of word in feet 1 1 0 1 1 
Word position in phrase 1 1 1 1 1 
Length of phrase in words 1 0 0 1 1 
Length of sentence in phrases 1 0 0 0 1 

Total of ‘correct’ answers 13 14 9 10  

% 76% 82% 53% 59%  

Total average %    67%  
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durations measured on isolated sentences and the temporal structure of fluent 
speech, however, are known to differ quite considerably (Campbell 2000:312–
315). 

 

3.3. Lexical prosody 
 

Traditionally a list of factors significantly affecting speech timing does not 
include either part-of-speech (POS) information or morphological characteristics (van 
Santen 1998, Campbell 200, Sagisaka 2003). This may be due to most studies on 
TTS synthesis focusing on languages with relatively little morphology. Finnish is one 
of the few languages boasting a study of the influence of morphological features on 
the duration of speech units (Vainio 2001). In Estonian the word has a very important 
role both in grammar and phonetics, while the morphology is extremely rich. Hence 
our interest to check whether there are any morphological, lexical, or even syntactic 
features possibly affecting the temporal structure of Estonian speech. The most 
natural way to find out that information seemed to lie through an extension of our 
earlier methodology of statistical modelling to see how certain morphological, lexical 
and syntactic characteristics might affect the functioning of our durational models. 
The modelling was done using two different methods - linear regression and a 
nonlinear method of neural networks. Change of the output error was measured to 
enable qualitative assessment of the influence of the factors under study. The results 
demonstrated a couple of percent error decrease in case some morpho-syntactic and 
POS information had been added to model input (Mihkla 2007). 

As the models were based on the speech of merely two radio announcers it 
seemed a little premature to generalize the possible interpretations. It should however 
be mentioned  that the most distinct regularities were revealed by a visual observation 
of the POS regression coefficients. Table 2 demonstrates the mean lengthenings and 
shortenings, by part of speech, of speech sounds relative to verb sounds in the dura-
tional models of male and female speech. As we can see, there is more variation in 
the middle part of the table, while the top and bottom parts are rather similar. Table 2 
reveals that in proper names sounds are pronounced longer by 5.2–6.2 ms on average. 
The two newscasters’ mean phone length was 62.5 and 64.1 ms respectively. 
Consequently their pronunciation of proper names was about 10% longer than verbs. 
Of the latter, nouns and adpositions were pronounced a little longer. It was surprising 
to find such lengthening in adpositions as in most languages function words are 
shorter than content words. An Estonian adposition invariably belongs to a noun 
phrase. The noun often stands in the focus of the sentence, while its more than 
average length may extend to a neighbouring adposition. Ordinal numerals, however, 
were pronounced over 10% shorter, and pronouns and adverbials ca. 5% shorter than 
average. The shortening of ordinal numerals can be accounted for by quite many 
dates in the text, which are typically expressed by ordinal numerals. Reading the 
relatively long dates of the past century the newscasters tend to hurry. This is because 
usually only the last one or two numbers of the year are important, but nevertheless 
the whole number has to be pronounced, as required by rules of correct reading. 
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Table 2. The average lengthening-shortening values (in ms) of sound durations for different 
parts of speech in the male and female material 

 

Part of speech Male announcer Female announcer 

Proper noun 6.23 5.22 
Noun 2.25 2.10 
Adposition 0.82 2.82 
Genitive attribute 0.42 1.35 
Verb 0.00 0.00 
Numeral –0.10 0.42 
Conjunction –0.14 1.81 
Adjective –0.39 1.14 
Adverb –0.89 –2.90 
Pronoun –4.13 –3.86 
Ordinal numeral –5.44 –7.48 

  
3.4.Pauses in speech 

Regulating the primary syntactic division or prosodic phrasing with an aim to 
facilitate comprehension of the utterance, pauses are one of the factors determining 
speech rhythm (Tseng 2002). Despite the high variability of pauses in natural speech, 
different kinds of pauses vary in duration. At least in texts read aloud at a normal 
speech rate it is possible to distinguish between phrase-, sentence- and paragraph-
final pauses by their duration, as has been proved by statistical analysis (Mihkla 
2006a:290). A natural-sounding rhythm of synthetic speech would mean a good 
enough rendering of both the duration of pauses and their location in the speech flow.  

For modelling pause durations some texts were used to generate a number of 
characteristics describing the following:  

– text structure (end of paragraph, sentence, or phrase; conjunctions within the 
text) 

– prepausal foot (length of the foot in phones, foot quantity degree, length of 
the foot-final syllable in phones and a binary characteristic indicating final 
lengthening) 

– pause timing specifications (distance of the pause from the beginning of the 
paragraph, sentence, and phrase, as well as its distance from the previous 
pause and the previous breathing). 

The feature to be predicted was pause duration. The use of linear regression 
required the response to be logarithmed, for logarithmed values are more likely to 
yield a normal distribution. See Fig. 4 for a regression tree to calculate pause 
duration. 

The first-level classification of pauses on the regression tree distinguishes between 
sentence-final and non-sentence-final pauses. The intra-sentence pauses branch off to 
the left, while sentence-final ones go to the right. The intra-sentence pauses are, in 
turn, dichotomized depending on whether they happen to finish a phrase or not. The 
length of an intra-phrasal pause, for example, distanced from the previous pause by 
less than seven feet is 166 ms, whereas a longer distance correlates with a 253 ms 
pause.  
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Figure 4. Regression tree to model pause durations in a text. The boxes with rounded corners stand 
for the leaves of the tree, each referring to the duration of the appropriate pause class.  

 
 
Prediction of pause location was started by applying logistic regression, meant to 

predict the probability of a pause following a given word in the speech flow. The 
input variables were the same as used for predicting pause durations. There were two 
additional binary features, indicating whether the following word is a proper noun or 
a foreign word. Their addition was inspired by the idea that there might be a short 
pause before the pronunciation of proper names (e.g. Minu nimi on Tamm, Jüri 
Tamm ‘My name is Tamm, Jüri Tamm’) and maybe also before some more 
sophisticated foreign words (e.g. Rahvas toetas konstitutsioonilist monarhiat ‘The 
people supported constitutional monarchy’). That hypothesis was, however, 
disproved. The correlation of pauses with proper names and foreign words was 
extremely weak and thus the features proved insignificant.  

 
 

Table 3. Pause locations as predicted by the logistic model  
 

 Correct predictions Actual no. of pauses in the 
sample 

Percent of correctness 

Pause after word  
(PAUSE = 1) 

402 600 67 

No pause (PAUSE=0) 2510 2708 93 
TOTAL 88 
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As can be seen from Table 3 the model predicted correctly the location of 67% of 
the pauses. The total predictive precision of the model, i.e. its ability to guess whether 
a certain word will be followed by a pause or not, amounted to 88%. Analysis 
showed that certain markers of text structure (end of paragraph, end of sentence, 
colon, dash) are followed by a pause with a 93-100% probability. Leaving out such 
well-marked pauses the model was left with a mere 44% of predictive power.  

 
3.5. Feature significance, predictive precision and errors 

Prior to evaluating the significance of features one should test the statistical 
relevance of the model. Table 4 shows an example of the summary of fit and 
variability analysis of our regression model of pause durations. We can see that the 
model is statistically significant and it describes ca 67% of the variability of pause 
durations (R-square = 0.6686). Other durational models described 65–73% of pause 
duration variability, while for phone durations the reading amounted to 52–63%. 
 
 

Tabel 4. Summary of fit and variability analysis of a regression model of pause durations  
  

Summary of fit 

Mean of response  –0,86673 R-square  0.6686 

Analysis of variance 

Source DF Sum of squares Mean square F stat Pr > F 

Model 
Error 
C Total 

9 
560 
559 

478.5 
408.8 
787.2 

18.403     
0.0862 

220.87 <0.0001 

 
 
Feature significance is best determined in the case of a regression model, where 

the significance of each feature gets a statistical evaluation. The method of forward 
selection, for example, means that the most significant features at the moment are 
added to the model one by one, with revaluation taking place before each cycle. 
CART also makes sure that the regression tree will get the most significant features. 
In neural networks, however, there is no such evaluation of significance and the 
relevance of a feature can be estimated manually, by adding or removing features one 
by one and evaluating the output for each case.  

Table 5 contains the features that – on the basis of extensive experimental material 
– have been found to be significant in predicting phone duration. The number of 
significant features may vary across speakers; it also depends on the used method. 
The features in bold letters on dark grey background mark features that were 
significant for all speakers. The features in normal lettering on a lighter grey back-
ground were insignificant for the durational models of some speakers. Surprisingly 
the latter group includes the quantity degree of foot, which is considered a corner-
stone of Estonian speech prosody. One of the possible reasons might lie in the 
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circumstance that quantity degree as a suprasegmental feature cannot be represented 
as a  single  linear  characteristic,  but  rather  as a  ratio  of  structural  components  of  

Table 5. Significance of input features for modelling segmental durations 
 

 Inputs (per sound) 
1. previous but one phoneme class 
2. previous but one phoneme length 
3. previous phoneme class 
4. previous phoneme length 
5. current phoneme identity 
6. current phoneme length 
7. next phoneme class 
8. next phoneme length 
9. next but one phoneme class 

10. next but one phoneme length 
11. phoneme position in syllable 
12. stress of syllable 
13. type of syllable 
14. quantity degree of foot 
15. syllable position in foot 
16. length of foot in syllables 
17. foot position in word 
18. length of word in feet 
19. monosyllabic word 
20. word position in phrase 
21. length of phrase in words 
22. length of sentence in phrases 
23. punctuation 
24. morphology 
25. part-of-speech 
26. part of sentence 

 
 

stressed and unstressed syllables in the form σstressed(nucleus+[coda]) / 
σunstressed(nucleus). Another fact suggestive of possible mutual effects between 
stress and syllable structure is that syllable stress does not always correlate 
significantly with the duration to be predicted. Surprisingly enough the contrastive 
length of the next phone happened to be less significant than that of the next but 
one. The normal type on a white background marks the two features that proved 
systematically insignificant for the prediction of segmental durations, notably, 
type of syllable (open or closed) and the position of the foot in the word.  

Table 6 contains the six features proved by logistic regression to affect the 
positioning of an intra-sentence pause. A comma in the text is very important, raising 
the chances for a pause to occur in speech by 17.4 times. A 7–8 times higher chance 
for the word to be followed by a pause is signalled by a following conjunction or a 
lengthened final foot. Slightly more frequently than average a pause can be expected 
to occur after longer feet or after words of longer quantity degrees. In a predictive 
model, however, the role of the latter two features remains relatively marginal, 
raising the chances for a pause to occur by no more than 1.2–1.3 times. 
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Table 6. Results of logistic regression: variables explanatory of the location of an intra-sentence 
pause, their ratio of chances and confidence levels 
 

Confidence levels 
Independent variables 

Odds ratio  

Lower Upper 

The word is followed by a comma 17.4 11.7 25.9 
The next word is a conjunction 7.9 4.8 12.8 
Distance of the word from sentence beginning  1.1 1.0 1.2 
Length of the preceding foot  1.3 1.1 1.4 
Quantity degree of the preceding foot  1.2 1.1 1.5 
Lengthening of the preceding foot 6.9 5.2 9.2 

 
 
Depending on the speaker and the method, the predictive error of phone durations 

was within 16.1–21.2%. Testing different methods (linear regression, CART, neural 
networks) on one and the same data set, it turned out that the predictive precision of 
linear regression and the neural networks was nearly equal, while the CART model 
had a slightly higher predictive error than the rest (Mihkla 2006b:123). We were 
surprised to find that the linear method could compete with non-linear ones, although 
a linear model is usually expected to show nothing but the most obvious and most 
general relations between input and output, and only nonlinear methods are trusted to 
reveal the more covert relations.  

For pause durations the predictive error was - depending on the speaker - 8-12%. 
The predictive precision of the logistic model for pause locations is presented in 
Table 3. If, however, the punctuation-bound pauses are left out, the predictive 
precision of intra-sentence pauses drops to 44%. 

 
 

4. Conclusion 
 
Generation of synthetic speech with a prosodically appropriate temporal structure 

is complicated as  speech prosody is influenced by  many factors. In feature selection 
one should consider certain general aspects governing speech timing as well as some 
language specific ones. The Estonian durational model stands out for certain foot-
bound features (foot quantity degree, number of feet in the word) being included in 
the model input. Although feature selection involved the use of expert opinions, too, 
the vector of optimal argument features should definitely be tested by statistical 
methods. The considerable difference between the expert opinions and the results of 
fluent speech analysis may be due to the fact that the ‘durational patterns’ underlying 
the decisions of the expert phoneticians were quite likely  based on measurements of 
laboratory speech (i.e. isolated sentences and words). Prediction of pause durations 
and locations in the speech flow was proved to heavily depend on the following 
features: distance of the word from sentence beginning and the previous pause, length 
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of the preceding phrase, length and quantity degree of the preceding foot, and the 
occurrence of a punctuation mark or conjunction. For the durations of speech units 
the predictive precision of the model differed across the methods used as well as 
speakers, while for segmental durations the predictive error was 16–21% and for 
pause durations it was 8–12%. Although in the logistic model the summary estima-
tion of the possible occurrence of a pause after a text word amounted to 88%, 
predictive precision for intra-sentence pauses did not exceed 44%.  

Apart from the traditional parameters, describing the context of a phone and its 
hierarchic position in the sentence, prediction of Estonian segmental durations 
requires an addition of certain morphological, syntactic and lexical features such as 
word form, part of sentence and part of speech. The most distinct regularities were 
revealed by part-of-speech analysis of the durational model, showing that proper 
names and nouns were pronounced the longest, whereas the least time was spent on 
ordinal numerals and pronouns.  
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