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Abstract. Secondary raw materials, such as ashes from the combustion of
various fuels, are frequently used as alternatives to virgin raw materials.
Among these, oil shale ash, a residue from oil shale power production and
the shale oil industry, presents significant potential for use in sectors such
as construction and agriculture. However, these materials might contain
hazardous substances, such as dioxins, which are by-products of thermal
treatment and other industrial processes. To date, the dioxin content in oil shale
ash has been insufficiently examined. This article provides a comprehensive
analysis of the dioxin content in oil shale ash from both a pilot unit and full-
scale facilities. Additionally, the study compares the dioxin concentrations in
oil shale ash with those in other types of ash and evaluates compliance with
regulatory limits. The results showed that dioxin concentrations in the ash were
below the limit of detection, regardless of the combustion technology, plant
capacity, use of supplementary fuels, or utilisation of wastewater. The findings
contribute new knowledge by highlighting the environmental advantages of oil
shale ash as a secondary raw material, particularly due to its comparatively
lower dioxin content relative to other types of ash.

Keywords: oil shale ash, secondary raw material, dioxins, PCDD, PCDF, PCB.

1. Introduction

The world population has increased rapidly in the last five decades, reaching
over 8.2 billion in 2025 and causing massive demand for natural resources [1].
With limited resources and a growing population, the linear business model
(produce, use, dispose) is not sustainable. In 2020, the European Commission
adopted the new Circular Economy Action Plan (CEAP) [2]. The main
principles of the circular economy are sustainable production and consumption.
The CEAP ensures that waste is prevented and that resources are used fully
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and for as long as possible. Finally, waste that cannot be prevented is recycled
and used instead of virgin materials.

In the energy sector, combustion processes — whether from fossil fuels,
biomass, or waste incineration — produce significant quantities of ash and
gas-cleaning residues. These by-products have traditionally been treated
as waste, but growing research has focused on how they can be recovered
and repurposed [3—-10]. Combustion residues can be used as construction
materials [11], as sources for extracting valuable elements [4], as soil amend-
ment components [12], or as fertilisers [13]. By converting these residues
into useful products, the demand for virgin raw materials can be reduced,
supporting a more circular economy. In 2023, the American Coal Ash
Association [14] reported that the United States generated 66.7 million tonnes
of coal combustion residues, with 69% of that beneficially recovered — a sign
of progress toward more sustainable waste management.

While waste recovery offers clear environmental benefits, it also raises
concerns, as several toxic compounds are produced in combustion processes.
Pollution is one of the triple planetary crises, along with climate change
and biodiversity loss, so it is crucial to achieve a circular economy without
generating hazardous pollutants.

Dioxins represent a category of persistent organic pollutants (POPs) [15] of
particular concern in the context of waste management, especially regarding
the residues generated from waste incineration. Even at lower concentrations
than those found in waste incineration residues, dioxins can also form during
the combustion of traditional fuels such as biomass, coal, and oil shale.

The formation of dioxins in combustion systems occurs primarily through
two mechanisms: de novo and precursor pathways. De novo formation is
regarded as the dominant route at post-combustion temperatures between 200—
400 °C. In this process, dioxins are generated from unburned carbonaceous
material such as soot or fly ash through oxidation and chlorination on particle
surfaces in the presence of oxygen, chlorine, and metal catalysts. This
heterogeneous mechanism is highly sensitive to temperature, fuel composition,
and the availability of chlorine species [16, 17].

In contrast, the precursor pathway involves the transformation of
chemically related compounds such as chlorophenols and chlorobenzenes.
These compounds undergo condensation and subsequent reactions either in the
gas phase or on particle surfaces, leading to the formation of polychlorinated
dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs). Both mechanisms
can occur simultaneously and independently in different regions of the
combustion system. At higher temperatures (500-800 °C), homogeneous
gas-phase reactions dominate, but overall dioxin formation is greatly reduced
compared with the cooler post-combustion zone, where conditions strongly
favour de novo synthesis [17].

The term ‘dioxins’ is a general term used to describe 75 polychlorinated
PCDDs, 135 PCDFs, and sometimes also 209 polychlorinated biphenyls
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(PCBs) [18]. Not all dioxin congeners are considered toxic; so far, 10 PCDFs,
7PCDDs, and 12 PCBs out of the 419 dioxin congeners have been recognised by
the World Health Organisation (WHO) as having toxic effects on humans [19].
The congeners of dioxins exhibit varying toxic effects.

The International Toxic Equivalency Factor (I-TEF) system, established
in the late 1980s, was an early method to assess the toxicity of dioxins and
furans by assigning toxic equivalency factors (TEFs) to various congeners
relative to 2,3,7,8-tetrachlorodibenzodioxin (2,3,7,8-TCDD), the most toxic
dioxin. Within this system, the overall toxic equivalent (TEQ) is calculated
by multiplying the concentration of each congener by its assigned TEF and
summing the results across all congeners. In 1998, and again in 2005, the
WHO updated this approach, resulting in the WHO (2005) TEQ system
(see Table 1). This revision incorporated new scientific data, leading to
adjustments in TEFs for certain congeners and the inclusion of dioxin-like
PCBs. Consequently, the WHO (2005) TEQ provides a more comprehensive
assessment of toxicity by considering a broader range of compounds and
reflecting updated toxicological understanding [19, 20]

Studies have shown that TEQ values calculated using the WHO (2005)
TEFs can be approximately 20% lower than those calculated with the older
I-TEQ system, due to the revised TEFs and the inclusion of additional
compounds [21]. In 2022, the WHO reviewed and updated the TEF values,
further refining the toxicity assessment framework [22].

Table 1. Summary of toxic equivalency factors (TEFs) [22-24]

Compound I-TEF 1998 2005 2022
WHO-TEF | WHO-TEF | WHO-TEF
Dioxins
2,3,7,8-TCDD 1 1 1 1
1,2,3,7,8-PeCDD 0.5 1 1 0.4
1,2,3,4,7,8-HxCDD 0.1 0.1 0.1 0.09
1,2,3,6,7,8-HxCDD 0.1 0.1 0.1 0.07
1,2,3,7,8,9-HxCDD 0.1 0.1 0.1 0.05
1,2,3,4,6,7,8-HpCDD 0.01 0.01 0.01 0.05
OCDD 0.001 0.0001 0.0003 0.001
Furans
TCDF 0.1 0.1 0.1 0.07
1,2,3,7,8-PeCDF 0.05 0.05 0.03 0.01
2,3,4,7,8-PeCDF 0.5 0.5 0.3 0.1

Continued on the next page
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Table 1. Continued

Compound I-TEF 1998 2005 2022
WHO-TEF | WHO-TEF | WHO-TEF

1,2,3,4,7,8 HxCDF 0.1 0.1 0.1 0.3
1,2,3,6,7,8-HxCDF 0.1 0.1 0.1 0.09
1,2,3,7,8,9-HxCDF 0.1 0.1 0.1 0.2
2,3,4,6,7,8-HxCDF 0.1 0.1 0.1 0.1
1,2,3,4,6,7,8-HpCDF 0.01 0.01 0.01 0.02
1,2,3,4,7,8,9-HpCDF 0.01 0.01 0.01 0.1
OCDF 0.001 0.0001 0.0003 0.002

Non-ortho-substituted PCBs

3,3’,4,4’-tetraCB (PCB77) 0.0001 0.0001 0.0003
3.4,4°,5-tetraCB (PCB81) 0.0001 0.0003 0.006
3,3°,4,4°,5-pentaCB (PCB126) 0.1 0.1 0.05
3,3°,4,4°,5,5’-hexaCB (PCB169) 0.01 0.03 0.005

Mono-ortho-substituted PCBs

2,3,3°,4,4’-pentaCB (PCB105) 0.0001 0.00003 0.00003
2,3,4,4°,5-pentaCB (PCB114) 0.0005 0.00003 0.00003
2,3’,4,4’,5-pentaCB (PCB118) 0.0001 0.00003 0.00003
2’,3,4,4°,5-pentaCB (PCB123) 0.0001 0.00003 0.00003
2,3,3’,4,4’,5-hexaCB (PCB156) 0.0005 0.00003 0.00003
2,3,3’,4,4,5’-hexaCB (PCB157) 0.0005 0.00003 0.00003
2,3’,4,4°,5,5’-hexaCB (PCB167) 0.00001 0.00003 0.00003
2,3,3°,4,4°,5,5’-heptaCB (PCB189) 0.0001 0.00003 0.00003

Oil shale is a sedimentary rock, with over 600 known deposits worldwide.
However, only 33 countries have deposits that are considered to have potential
economic value. The estimation of oil shale resources is typically expressed
in terms of barrels of oil, indicating how much oil can be extracted from the
rock. Estimates suggest that there are between 5 and 6 trillion barrels (760—
960 billion cubic metres) of shale oil, of which approximately 1.0 to 1.6
trillion barrels (160—300 billion cubic metres) may be technically recoverable.
The largest oil shale resources are concentrated in a few key countries.
The United States holds the most significant reserves, estimated at around
6 trillion barrels, followed by China with 330 billion barrels, Russia with
270 billion barrels, and Israel with 250 billion barrels. Jordan and the
Democratic Republic of the Congo each possess approximately 100 billion
barrels, while Estonia has an estimated 16 billion barrels [25-27].
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Oil shales can be classified using various methods. Hutton [27] categorises
them into three groups based on their depositional environment: terrestrial,
lacustrine, and marine. Marine oil shales are further classified by location
into marinite, tasmanite, and kukersite. Alternatively, Tissot and Welte [28]
classify oil shales based on their organic matter, specifically kerogen, using
its hydrogen-to-carbon (H/C) and oxygen-to-carbon (O/C) ratios. The Van
Krevelen diagram is introduced to distinguish between type I, type 11, and type
III kerogens. The oil shale found in Estonia is sometimes also referred to as
type 11, close to type I, and it is called kukersite. Kukersite has a high content
of hydrogen and oxygen, a low nitrogen content, and significant amounts of
organic sulphur and chlorine [29, 30].

In Estonia, oil shale is used in power plants to produce electricity and heat,
and in the shale oil industry, where the rock is pyrolysed (i.e. thermally treated
at around 500 °C in the absence of oxygen) to produce oil. During shale
oil production, retort gas is also produced, which serves as a fuel in power
plants. Retort gas primarily consists of light hydrocarbons, hydrogen, carbon
monoxide, and carbon dioxide [31]. In Estonia, power production and shale
oil production generate about 5 million tonnes of ash per year [32], although
in the past it has been twice as much.

The oil shale ash generated in Estonia has been very well studied [ 11, 33-39]
and it has great potential as a raw material. One of the main characteristics
of oil shale ash is its pozzolanic and latent hydraulic properties, which make
it a suitable substitute for conventional cementitious materials [40]. Studies
have shown that oil shale ash-based concrete can achieve compressive
strengths of up to 25 MPa within 28 days, making it a viable material for low-
strength concrete applications and backfilling in mining operations [41, 42].
Furthermore, oil shale ash-based concrete has exhibited enhanced water
resistance and reduced expansion, particularly when circulating fluidised bed
(CFB) ash with a higher active silica content is incorporated [40].

In addition to its use in concrete, oil shale ash has been proven to be an
effective material for road construction and soil stabilisation. Studies of road
sections constructed with oil shale ash have shown improved soil strength and
reduced settlement, particularly in peat-rich environments [43]. In addition,
oil shale ash has been tested as a soil amendment for acidic peatlands, where
its alkaline properties help to raise soil pH, improving nutrient availability for
plants [44]. The granulated form of oil shale ash has also been investigated to
control the mobility of potentially hazardous elements, with results indicating
minimal leaching of heavy metals such as cadmium (Cd), mercury (Hg), and
lead (Pb) under controlled conditions [45]

Dioxin content can be a limiting factor when it exceeds regulatory limits,
rendering the ash material unsuitable for recovery or further use. Dioxins
are classified as unintentional POPs under the Stockholm Convention [15].
The Stockholm Convention requires the destruction of POPs wastes and bans
the recycling of wastes contaminated with POPs. Low POPs content levels
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define whether certain wastes should be categorised as POPs waste or not.
In the general technical guidelines on the environmentally sound management
of wastes consisting of, containing or contaminated with persistent organic
pollutants [46] the low POPs content levels are set. The current low POPs
content for PCDD/PCDFs is up to 15 pg TEQ/kg, while the discussion is still
ongoing, with several stakeholders requesting the value to be 5 ug TEQ/kg or
even 1 ug TEQ/kg [47].

The EU has established stringent regulations to control the presence of
dioxins and other POPs in materials such as waste and ash, particularly under
the EU POPs Regulation [48] and the EU Fertilisers Regulation [49]. These
regulations set specific concentration limits for dioxins to ensure the protection
of human health and the environment. Any waste, including ash, that exceeds
5 ng TEQ/kg total dioxin content cannot be recovered and must be disposed
of'in a controlled manner. The dioxin threshold for fertilising materials is even
stricter. Specifically, for Component Material Category (CMC) 15, which
includes ashes, the regulation stipulates the concentration limit for PCDDs/
PCDFs at 20 ng TEQ/kg dry matter.

The generation of dioxins in the oil shale industry was investigated
20 years ago [50, 51]. The results showed that most of the dioxin congeners
in oil shale fly ash were below the detection limit, indicating that the dioxins
were not a cause for concern. However, the oil shale industry has changed
significantly over the past 20 years. New technologies have been introduced,
and the focus has shifted from power production to shale oil production. Oil
shale is often co-combusted with biomass or with the retort gas from the shale
oil industry. A thorough research study was conducted to evaluate the dioxin
content across different fractions of oil shale ash and to assess the potential
influence of the technologies utilised in its production. In this study, PCDDs,
PCDFs, and PCBs refer to those congeners listed in the EU POPs Regulation.
The term ‘dioxin’ is used here as a general term to describe these PCDDs,
PCDFs, and PCBs.

2. Methods and materials

2.1. Samples from pilot unit

Dioxin content in oil shale ash, as well as in the flue gas, was investigated in
a 60 kW CFB pilot unit. A detailed description of the pilot unit is given by
Bagain et al. [52]. Figure 1 shows a schematic of the pilot unit, including ash
sampling points.

The combustion process was carried out under conditions comparable to
those of the Enefit280 shale oil plant, where semi-coke is incinerated in a
circulating fluidised bed combustion (CFBC) boiler. Since semi-coke alone
was unable to sustain stable combustion due to its relatively low calorific
value, co-firing with oil shale was employed to enhance the overall energy
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Fig. 1. Schematic of the 60 kW, circulating fluidised bed pilot unit, including
temperature measurement points (T1-T6) and ash sampling points: bottom ash (BA),
ash from the external heat exchanger (EHE), cyclone ash (CY1 and CY2), and ash
from the bag filter (FA) (adapted from [52]). RFG — recycled flue gas.

input. The fuel blend, consisting of semi-coke and oil shale in a mass ratio
of 4:1, was combusted for five hours. The elemental composition of the fuel
is shown in Table 2. Ash samples were collected from different collection
points, as shown in Figure 1. Samples were taken several times during the
process to obtain an average sample for each collection point. The combustion
chamber operating temperatures, which are critical for evaluating co-firing
performance and ash behaviour, are summarised in Table 3.

Table 2. Elemental composition of the oil shale fuel mixture (oil shale + semi-coke)
used in the incineration test, wt%

C H S Inorganic C Organic C
8.22 0.62 0.82 3.01 6.13

Table 3. Measured temperatures (°C) at different heights in the combustion chamber

T1 T2 T3 T4 TS5 T6

0.11 m 0.9 m 1.17 m 2.145m 322 m 4.37 m T (EHE)

658-663 653-656 661 699-674 699-763 753-797 579-581
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Dioxin samples from the flue gas were collected isokinetically by experts
from the Estonian Environmental Research Centre. The dioxins were captured
using a heated sampling probe. Solid particles were separated from the sample
using a glass fibre plane filter located at the outlet of the heated sampling
probe. After passing through the filter, the gas flowed through a spiral cooler
and the XAD2 adsorbent column, which captured contaminants in the gas
phase. After passing through the XAD2, the gas was dried and then routed to
a gas clock to determine its volume.

The sample was collected on the pre-filter, the XAD2 adsorbent, and in the
washing solution. To obtain the washing solution, the gas path passing through
the equipment was cleaned afterwards. The total amount of compounds
per sample was obtained as a result of the analysis. When calculating the
concentration, the mass obtained was divided by the gas volume measured
using the gas clock.

2.2. Samples from full-scale facilities

Oil shale ash was collected from the installations of the main oil shale users.
The covered plants were Auvere Power Plant (Auvere PP), the pulverised
combustion (PC) unit and the CFB unit of Eesti Power Plant (Eesti PP),
and the shale oil production installations Enefit280, Enefit140, and Petroter.
At least two different ash samples were collected from each installation.
In total, twenty ash samples were analysed for dioxin content (see Table 4).
A detailed description of the technologies and ashes produced in the Estonian
oil shale industry can be found in an article by Ummik et al. [53].

In shale oil plants, oil shale ash is produced when a mixture of semi-coke
and recirculated ash (solid heat carrier) from the retort is combusted in either
a lift-pipe combustor (used in the Enefit140 and Petroter technologies) or
CFB combustor (used in the Enefit280 technology). This means that the ash
originates from oil shale. In oil shale power plants, retort gas from shale oil
production or biomass is co-combusted with oil shale. Pyrolytic wastewater
originating from shale oil production (Enefitl40 and Enefit280) is also
sometimes incinerated in power plant boilers [54]. To better understand
whether these additional fuels or pyrolytic wastewater might affect dioxin
formation, ashes generated under different conditions were investigated.

Ash from the Auvere PP CFB boiler was collected during the co-
combustion of oil shale, retort gas, and biomass (wood chips). The boiler has
a gross electrical capacity of 305 MW _and was operating at 233 MW _ during
sampling. The fuel mix was based on heat input as follows: 60% oil shale,
30% retort gas, and 10% biomass. Ash samples were collected from three
locations: the bottom of the boiler (bottom ash, BA), the first field of the
electrostatic precipitator (ESP), and the fabric filter (FF).

In the Eesti PP CFB unit, oil shale and retort gas were co-combusted at a
heat input ratio of 50% oil shale and 50% retort gas. The boiler operated at
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Table 4. Characteristics of plants and ash samples used in the study

Sample Sample Technology | Rated Capacity | Fuel mix | Waste-
collection capacity | during (based water,
area (gross), sampling, | on heat t/h
MW, MW, input)
Auvere PP BA Bottom of Power plant, 305 233 Oil shale |0
the boiler CFBC 60%,
) biomass
Auvere PP ESP Electrostatic 10%,
precipitator retort gas
(ESP) 30%
Auvere PP FF Fabric filter
(FF)
Eesti PP PC BA Bottom of Power plant, 185-195 165 Oil shale | 0,8, 16
the boiler PC 20%,
. retort gas
Eesti PP PC FF FF 185-195 165 80%
Eesti PP CFBC BA | Bottom of Power plant, 215 215 Oil shale | 0,8, 16
the boiler CFBC 50%,
retort gas
Eesti PP CFBC FF | FF 215 215 50%
Enefit280 CY Cyclone (CY) | Shale oil Oil shale |0
plant, 100%
Enefit280 ESP ESP SHC + CFBC
Enefit140 total Bunker of Shale oil Oil shale |0
total ash plant, SHC + 100%
lift-pipe
Enefit140 ESP ESP combustor
Petroter CY CY Shale oil Oil shale |0
plant, SHC + 100%
Petroter ESP ESP lift-pipe
combustor

Abbreviations: PP — power plant, BA — bottom ash, CFBC — circulating fluidised bed combustion,
PC — pulverised combustion, SHC — solid heat carrier, FF — fabric filter ash, ESP — electrostatic precipitator

ash, CY — cyclone ash.

full capacity, i.e. 215 MW . Ash samples were collected from the bottom of
the boiler (BA) and the first field of the ESP. Additionally, ash samples were
collected when pyrolytic wastewater was added to the boiler at mass flow
rates of 8 t/h and 16 t/h. The composition and characteristics of the pyrolytic
wastewater are described in detail by Konist et al. [54].




10 Mari-Liis Ummik et al.

In the Eesti PP PC unit, oil shale and retort gas were co-combusted, with
oil shale accounting for 20% of the heat input and retort gas accounting for
80%. The boiler operated at a capacity of 165 MW, slightly below its full
capacity of 185-195 MW . Ash samples were collected from the bottom of the
boiler (BA) and from the novel integrated desulphurisation (NID) fabric filter
(FF). Additionally, ash samples were collected when pyrolytic wastewater
was added to the boiler at mass flow rates of 8 t/h and 16 t/h.

Ashes from the Enefit280 and Petroter shale oil production units were
collected from the cyclone (CY) and the ESP. As with the Enefit140 unit, ash
was collected from the total ash bunker and the ESP.

2.3. Dioxin analysis

The concentrations of seven PCDDs, ten PCDFs, and twelve PCBs listed in
the EU POPs Regulation were analysed at the accredited ALS Laboratory in
the Czech Republic. The quantification of tetra- to octa-chlorinated dioxins
and furans was carried out using the isotope dilution technique HRGC-HRMS
(high-resolution gas chromatography/high-resolution mass spectrometry), in
accordance with the US EPA 1613B and CSN EN 16190 standards. Similarly,
PCBs were quantified using HRGC-HRMS in accordance with the CSN
EN 1948-4+A1 and US EPA TO-4A standards. A detailed description of the
analysis can be found in Ummik et al. [55].

For PCDDs/PCDFs, the limit of detection (LOD) was defined as the
concentration corresponding to a signal-to-noise ratio (S/N) > 3, while the limit
of quantification (LOQ) was set at twice the detection limit. In contrast, for
PCBs, the LOQ was established on the basis of the blank level, and the LOD
was similarly defined using an S/N >3 criterion. In most cases, concentrations
were reported as the LOQ; however, for certain PCB congeners, results were
only available at the LOD level. Measurement uncertainty was estimated at
approximately 30% for individual congeners, with values validated through
the analysis of certified reference materials under reproducibility-controlled
conditions.

The dioxin concentrations presented in this study are based on dry weight
and expressed in ng/kg and ng TEQ/kg. All dioxin concentrations expressed
in ng TEQ/kg were calculated in accordance with the POPs Regulation [48],
using the TEFs outlined therein. The TEF values in the EU POPs Regulation
are identical to the 2005 WHO-TEFs [19]. To provide a conservative estimate
of the potential maximum concentrations, the upper-bound approach [56] was
applied, whereby all results below the LOQ are assumed to be equal to the
LOQ value.
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3. Results and discussion

3.1. Dioxins from oil shale pilot unit

There is a noticeable lack of information regarding the dioxin content of
Estonian oil shale ashes. The only exception is a study by Roots [50], which
focused on analyses conducted in 1998 of fly ash from the PC unit of Balti
Power Plant. On average, oil shale organic matter contains 0.75% chlorine [29],
an essential component for dioxin formation. Dioxins can form during any
type of combustion process when carbon, chlorine, and oxygen are present.
They form most readily within two temperature ranges: 500-800 °C and
200400 °C [16, 17]. The temperature in a PC boiler can reach 1400 °C [36],
meaning that dioxins form only when the ash cools. However, the temperature
in a CFB boiler is approximately 800 °C [57], and the fly ash leaving the
boiler is cooling along the gas passage, creating favourable conditions for
dioxin formation.

The incineration conditions in the pilot unit closely mirrored those of the
full-scale Enefit280 facility, particularly in terms of temperature distribution
and oxygen concentration. This alignment supports the validity of extrapolating
the results to full-scale operations. The temperature in the pilot unit was in the
range of 579—797 °C, which is suitable for the formation of dioxins. However,
all the measured dioxin congeners in both the ash samples and the flue gas
were below the LOQ.

Although all measured dioxin congeners in the ash and flue gas samples
were below the LOQ, this outcome does not confirm their complete absence.
Even with state-of-the-art HRGC methods [58, 59], which can detect at the
parts-per-trillion range [60], trace concentrations below quantifiable levels
may still be present. This highlights an inherent limitation in dioxin analysis:
analytical methods cannot guarantee absolute absence but can only establish
that concentrations fall below a defined threshold of quantification. The use
of the upper-bound approach offers a worst-case estimate of possible dioxin
content in the samples. However, it should be noted that no official guidance
currently supports this approach for waste or for secondary uses such as
fertilisers.

Table 5 presents the concentrations of dioxin congeners in the oil shale
ash from the pilot unit using the upper-bound approach. While this ensures a
worst-case estimate, it also means that apparent variations between samples,
or between the present results and previously published datasets, cannot be
interpreted as true differences in dioxin content. Such discrepancies arise
primarily from differences in LOQ values, which are influenced by matrix
effects, background noise, and blank levels during analysis, rather than
reflecting real changes in concentration.
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Table 5. Dioxin content of the oil shale ash from the pilot unit calculated using the
upper-bound approach, ng/kg DW

Ash sampling point BA EHE CY1 CY2 FA1 FA2
PCB 105 180 160 220 93 120 150
PCB 114 7.5 13 3 2.1 8.1 16

PCB 118 770 650 950 760 750 510
PCB 123* 7.2 11 3.1 2.1 7 16

PCB 126 7.3 7 53 7.4 6.6 39
PCB 156 160 140 110 130 100 120
PCB 157* 12 16 26 9.7 7.7 20

PCB 167 71 59 74 24 62 52

PCB 169 8.8 11 11 8.6 7.8 22
PCB 170 150 170 330 150 220 250
PCB 180 460 430 560 350 490 420
PCB 189* 9.4 24 8.5 5.5 16 22

PCB 77 35 53 21 37 57 61

PCB 81 23 19 6.6 15 11 5.1
> PCB 1291 1163 1438 1094 1153 978
> TEQ PCB 1.04 1.07 0.9 1.04 0.93 0.49
1234678-HpCDD 2.7 3.7 2 2.3 2.3 1.8
1234678-HpCDF 2.4 4 44 2 2.6 5.6
123478-HxCDD 2.8 2.7 2.6 2.6 2.7 2.4
123478-HxCDF 1.8 1.9 1.5 1.6 1.4 1.2
1234789-HpCDF 5.5 18 2.9 2.8 16 6.5
123678-HxCDD 2 2 1.7 2.1 22 2

123678-HxCDF 1.9 1.8 1.4 1.5 1.2 1.2
12378-PeCDD 0.96 1.2 1.7 1.7 0.71 1.4
12378-PeCDF 1.4 1 1.5 1.5 1 1.1
123789-HxCDD 1.9 1.9 1.6 2 2.1 1.9
123789-HxCDF 3.7 32 1.6 2.3 6.6 2.5
234678-HxCDF 2.6 2.2 1.2 1.5 1.7 1.4
23478-PeCDF 1.8 1.4 1.3 1.5 1.8 1.4
2378-TCDD 0.58 0.64 1 0.72 0.58 0.84
2378-TCDF 1.3 0.79 0.89 0.86 1 22

Continued on the next page
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Table S. Continued
Ash sampling point BA EHE CY1 CY2 FA1 FA2
OCDD 7.4 15 23 4.9 7.1 2.7
OCDF 5.7 11 1.8 3.8 5.5 6.4
>PCDD 10.9 12.1 10.6 11.4 10.6 10.3
> PCDF 28.1 45.29 18.49 19.36 38.8 29.5
> TEQ PCDD 2.23 2.53 3.31 3.11 2.01 2.90
> TEQ PCDF 1.79 1.66 1.16 1.32 1.94 1.43
> TEQ dioxins 5.07 5.27 5.38 5.47 4.90 4.80

* Limit of detection was used instead of limit of quantification.

Abbreviations: BA — bottom ash, EHE — external heat exchanger ash, CY — cyclone ash, FA — bag filter ash,

TEQ — toxic equivalent.

As EU air emission regulations such as the Industrial Emissions Directive
[61] and the Best Available Technique for Large Combustion Plants [62] only
cover PCDDs and PCDFs, PCBs were not measured. The dioxin concentrations
in the flue gas were below the detection limit (see Table 6), indicating that
dioxins are not forming during oil shale combustion.

Table 6. Dioxin content in the flue gas, pg/Nm?

Compound Concentration
2378-TCDD <1.92
12378-PeCDD <235
123478-HxCDD <4.32
123678-HxCDD <4.32
123789-HxCDD <4.32
1234678-HpCDD <4.32
OCDD <10.32
2378-TCDF <9.38
12378-PeCDF <3.89
23478-PeCDF <3.89
123478-HxCDF <4.64
123678-HxCDF <4.64
123789-HxCDF <4.64
234678-HxCDF <4.64
1234678-HpCDF <6.10
1234789-HpCDF <6.10

OCDF

<751
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3.2. Total dioxin content analysis from full-scale facilities

While the incineration conditions in the pilot unit were similar to those of
the full-scale Enefit280 facility, the resulting pollutant concentrations may
not be entirely representative. This discrepancy primarily arises from physical
differences, particularly in the size of the combustion chambers and the gas
flow pathways. In the full-scale facility, the larger gas passage results in a
longer residence time for the flue gases, facilitating a slower cooling rate of
the ash. This extended cooling period may promote the formation of dioxins,
potentially resulting in higher concentrations than those observed under pilot-
scale conditions.

To evaluate the influence of combustion temperature and technology on
dioxin formation under real conditions, ash samples were collected from
various operating oil shale plants and subsequently analysed. The con-
centrations of dioxin congeners in all samples were found to be below the
analytical detection limits (Appendices 1 and 2). This correlates with the
pilot tests but differs from the findings reported by Roots [50]. According to
Roots’ study, the total concentrations of PCDDs, PCDFs, and PCBs in one fly
ash sample were 32 ng/kg, 26 ng/kg, and 2400 ng/kg, respectively. A second
sample from the same study showed lower concentrations. However, it was not
specified which dioxin congeners were included in the total concentrations.
Of the dioxin congeners considered toxic, only four were above the detection
limit in Roots’ study: OCDD, 1,2,3,4,6,7,8-HpCDD, 2,3,4,6,7,8-HxCDF,
and 1,2,3,4,6,7.8-HpCDF. Even though they were present in very low
concentrations and the congeners had low TEF values, their presence indicates
that oil shale fly ash contained trace levels of toxic dioxins in 1998.

The absence of detectable dioxin congeners in the current study may be
due to technological advancements. In 1998, PC technology was used, and
fly ash was collected from electrostatic precipitators (ESPs). Today, PC units
are equipped with NID units, and the fly ash is collected from fabric filters.
As Roots’ study [50] did not provide detailed information on ash formation
conditions or collection methods, it is not possible to make a direct comparison
of the conditions influencing dioxin formation in the two studies.

The current study thoroughly investigated ash samples to determine
whether different conditions could affect dioxin formation. Ash was collected
from power plants operating at varying capacities. While partial capacities
compared to nominal have been shown to influence the mineral decomposition,
the particle-size distribution, and bulk density of ash [36], this variation did
not affect the dioxin content.

In Estonian oil shale power plants, oil shale is co-combusted with biomass
and/or retort gas. According to Ummik et al. [55], the chlorine content
in biomass ranges from 0.006% to 0.016%, which is generally lower than
that of oil shale. Retort gas from oil shale pyrolysis contains no measurable
chlorine [31]. Given the low chlorine content of these supplementary fuels,
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their influence on dioxin formation is unlikely — a conclusion supported by
our results (Table 5).

In oil shale power plants, wastewater generated during shale oil production
is utilised by injecting it into the combustion chamber, facilitating its
elimination through thermal degradation. Although water does not directly
form or eliminate dioxins, it can affect their formation. Li et al. [63] observed
that at higher temperatures, the presence of moisture can promote dioxin
formation. In this study, the addition of water to the oil shale combustion
process increased the flue gas moisture content by approximately 0.7—2.8%,
a relatively modest rise. Under these conditions, our findings showed that the
increased moisture had no observable effect on dioxin formation. As presented
in Table 7, the dioxin concentrations remained relatively consistent regardless
of whether wastewater was added.

Table 7. Dioxin content in ash samples (upper-bound approach) in relation to plant
capacity, fuel type, and wastewater addition

Sample Type Rated Capacity | Fuel Wastewater, | > dioxins,
capacity | during t/h TEQ ng/kg
(gross), | sampling, DW
MW, MW,
Auvere PPBA | CFBC 305 233 Qil shale, 0 5.75
Auvere PP ESP biomass, 5.6
retort gas
Auvere PP FF 5.81
Eesti PP PC BA | PC 185-195 165 Qil shale, 0 5.46
retort gas 16 569
Eesti PP BC FF | PC 185-195 165 0 5.44
5.12
16 5.44
Eesti PP CFBC | CFBC 215 215 Qil shale, 0 5.49
BA retort gas 3 569
16 5.74
Eesti PP CFBC | CFBC 215 215 0 5.41
FF 8 5.31
16 5.71
Enefit280 CY SHC + Oil shale 0 7.97
Enefit280 ESp | CFBC 5.42
Enefit140 total | SHC Oil shale 0 5.48
Enefit140 ESP 5.26
Petroter CY SHC Oil shale 0 493
Petroter ESP 5.23

Abbreviations: PP — power plant, BA — bottom ash, CFBC — circulating fluidised bed combustion,
PC — pulverised combustion, SHC — solid heat carrier, FF — fabric filter ash, ESP — electrostatic precipitator
ash, CY — cyclone ash, TEQ — toxic equivalent, DW — dry weight.
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The results reveal that, even in the worst-case scenario, the total TEQ
concentration of dioxins is around 5 ng TEQ/kg. The limit value for dioxins
in the EU POPs Regulation is 5 pg TEQ/kg, which is 1000 times higher.
The limit value in the EU Fertilisers Regulation is 20 ng TEQ/kg, which is
also four times higher.

Oil shale ash contains significantly lower concentrations of dioxins than
other combustion residues (see Table §8). Ash from municipal solid waste
incineration (MSWI) has been found to contain high levels of dioxins, which
vary widely depending on the incineration technology used, the pollution
control devices employed, the chlorine content, and the operational conditions.
TEQ levels for fly ash from MSWIs are high, reaching up to 2500 ng WHO
(2005) TEQ/kg [64, 65]. Bottom ash typically contains lower concentrations
of PCDDs/PCDFs than fly ash [65]. Biomass ashes, particularly fly ash,
also exhibit higher dioxin TEQ wvalues than oil shale ash, reaching up to
1139 ng TEQ/kg [66]. Ummik et al. [55] investigated biomass ashes from
different biomass combustion plants using wood chips as fuel. While the
dioxin content was generally below the detection limit, some fly ashes still had
dioxin concentrations that exceeded the limit set for fertilisers in the EU [49].
PCDD/PCDF levels in fly ash from coal-fired power plants are reported to be
significantly lower than in MSWI ash. Fly ash from a coal-fired power plant
contained PCDD/PCDF levels ranging from 0.1 to 78 ng TEQ/kg [67]. Fly ash
samples from coal and sewage sludge co-combustion contained dioxin levels
between 1.32 and 5.78 ng TEQ/kg [68].

While chlorine is an essential component for dioxin formation, variations
in fuel chlorine content alone cannot fully account for the observed patterns
in dioxin concentrations. Oil shale typically contains around 0.75 wt%
chlorine [29], yet its ashes show very low dioxin concentrations, suggesting
that its mineral matrix and combustion conditions suppress dioxin formation.
Wood, in contrast, has very low chlorine contents (0.001-0.006 wt% [55]),
but its fly ashes may still contain elevated dioxin levels. Municipal solid
waste is especially complex: its chlorine content is highly variable, depending
on the waste origin [69], which partly explains the wide range of dioxin
concentrations observed in MSWI residues. Coal occupies an intermediate
position, with chlorine contents ranging from 0.01 wt% in low-rank coals
up to 0.5 wt% or more in some bituminous coals, and occasionally above
1 wt% [70, 71]. Nevertheless, coal fly ash typically contains only 0.1-
78 ng TEQ/kg, much lower than MSWI ashes.
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Conclusion

This article provides a comprehensive overview of the dioxin content in oil
shale ash from various facilities and combustion conditions. Despite concerns
about dioxins as hazardous by-products of combustion processes, this analysis
found that dioxin concentrations in oil shale ash were below the detection
limit and remained significantly lower than regulatory thresholds, even in a
worst-case scenario using the upper-bound approach.

The study showed that for oil shale, the combustion technology and
production scale — whether pilot-scale, partial load, or nominal capacity — had
no discernible effect on dioxin formation in the resulting ashes. Likewise, the
utilisation of pyrolytic wastewater and supplementary fuels such as biomass
and retort gas did not influence dioxin concentrations.

Compared to other combustion residues such as municipal solid waste,
biomass, and coal ash, oil shale ash demonstrates substantially lower levels
of dioxins. In this study, the dioxin concentrations in oil shale ash were
consistently below the limit of quantification, corresponding to around
5 ng TEQ/kg in a worst-case upper-bound estimate. For comparison, municipal
solid waste fly ash can reach values up to 2500 ng TEQ/kg, biomass fly ash
up to 1100 ng TEQ/kg, and coal fly ash typically ranges between 0.1 and
78 ng TEQ/kg. Given its low dioxin content, oil shale ash has significant
potential for utilisation in the construction, agriculture, and resource recovery
sectors without presenting any dioxin-related risks.
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Abstract. This study focuses on the shale of the Lianggaoshan Formation in the
Northeast Sichuan Basin, aiming to analyze the pore structure characteristics
and influencing factors of its lithofacies — critical for shale oil exploration, as the
area has seen major shale oil and gas exploration breakthroughs. Fresh outcrop
shale samples were collected in the field, followed by experiments including
polarized-light microscope thin-section identification, X-ray diffraction, total
organic carbon analysis, gas adsorption, high-pressure mercury intrusion, and
scanning electron microscopy. Four lithofacies were classified. Results show the
shale contains micropores, mesopores, and macropores, total organic carbon
correlates positively with micropore/mesopore parameters but negatively with
macropores, while quartz content shows the opposite. The Frenkel-Halsey—
Hill fractal dimension correlates positively with total organic carbon, feldspar,
and clay minerals, and negatively with quartz. This provides a key theoretical
basis for local Lianggaoshan Formation shale oil exploration.

Keywords: Northeast Sichuan Lianggaoshan Formation, shale lithofacies,
pore structure, TOC, mineral composition.

1. Introduction
Since the North American shale oil and gas revolution, the global oil and

gas resource pattern has undergone major changes. As a major contributor
to today’s oil and gas resources, shale oil and gas has driven a continuous
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increase in global demand [1-3]. In recent years, China has steadily increased
its shale oil exploitation intensity. China’s recoverable shale oil volume grew
from 4.37 x 10? tons in 2015 to 1.45 x 10" tons in 2020, ranking third in the
world [4-6]. Compared with North American marine shale reservoirs, most of
China’s shale reservoirs are formed in lacustrine environments and exhibit a
series of unique geological characteristics. The single-layer thickness of China’s
lacustrine shale reservoirs is relatively thin. The sedimentary environment
shows a high degree of complexity, with lithofacies changing rapidly over
short distances. Reservoir heterogeneity is extremely prominent [7-9]. This
complexity exerts an important restrictive influence on the enrichment of shale
oil resources and the enhancement of exploration levels. It also gives rise to a
diversity of lithofacies types and intensifies heterogeneity among lithofacies,
thereby rendering it difficult to determine pore structure characteristics
corresponding to different lithofacies [10, 11]. Consequently, undertaking
systematic research on the basis of lithofacies units is of pivotal importance
for shale oil exploration and evaluation. Notably, pore structure acts as the core
“storage and migration channel” of shale oil — its type, size distribution, and
connectivity directly determine the reservoir’s oil-bearing capacity and fluid
flow efficiency, which are essential prerequisites for accurately evaluating the
recoverable potential of shale oil in the Lianggaoshan Formation (Fm).

The evolution of shale pore structure is influenced by a multitude of factors,
including total organic carbon (TOC) content, mineral composition, structural
deformation, water saturation, and lamina morphology. Zheng et al. [12]
proposed that organic matter, along with components such as quartz and clay
minerals, significantly impacts the pore structure of the Longmaxi Fm shale
in the Sichuan Basin. Cheng et al. [13] indicated that structural deforma-
tion leads to the development of additional pores and fractures in shale.
Specifically, intergranular pores, interlayer pores, and microfractures among
mineral fragments represent the primary contributors to the expansion of the
pore structure. Wang et al. [ 14] exemplified this in the Bossier shale of eastern
Texas, USA, and analyzed the characteristics of lamina morphology and pore
structure through thin-section petrography.

Previous investigations have predominantly focused on analyzing the pore
structure characteristics of black lacustrine shales with high TOC content.
However, the sedimentary environment of most lacustrine shale formations
is intricate, and lithology changes rapidly. This complexity severely restricts
our understanding of shale reservoir characteristics and their formation
mechanisms. Hence, elucidating the influencing factors of pore structure
across different lithofacies is crucial for exploring the shale reservoir potential
of the Lianggaoshan Fm in the Northeast Sichuan Basin [15-17].

Since 2017, China National Petroleum Corporation and China Petroleum
& Chemical Corporation have achieved significant new breakthroughs in the
shale reservoirs of the Lianggaoshan Fm in the Northeast Sichuan Basis. These
achievements indicate that the northeastern Sichuan region is likely to emerge
as a crucial new lacustrine shale oil and gas production area in China [18, 19].
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The shale strata of the Lianggaoshan Fm exhibit a broad maturity range
(Ro: 0.9-1.9%), leading to distinct differences in micropore structures at
various stages of maturity evolution [20-22]. To a large extent, the
characteristics of the reservoir space in the study area remain unclear, which
severely restricts exploration progress.

Consequently, this study focuses on shale samples from the Lianggaoshan
Fm in the Northeast Sichuan Basin. Based on lamina characteristics
identified through thin-section analysis and results from various geochemical
experiments, the lithofacies are classified. By leveraging multiple pore-
characterization techniques, such as gas adsorption, high-pressure mercury
intrusion, and scanning electron microscopy (SEM), the pore structures of
shale reservoirs with different lithofacies are systematically characterized.
Moreover, the pore genesis of shale reservoirs in different lithofacies is
analyzed, and the key controlling factors of the pore structures across
lithofacies are disclosed.

2. Geological survey and experiments

2.1. Geological overview

The research area of this study is situated in the Qilixiang area of the
Lianggaoshan Fm within the Northeast Sichuan Basin. This formation is
characterized by a series of faults, uplifts, and depressions [23]. Based on
geomorphological characteristics, the region can be further classified into the
low-and-gentle structural belt in northern Sichuan, the low-and-steep structural
belt in western Sichuan, the low-and-steep structural belt in southern Sichuan,
and the high-and-steep structural belt in eastern Sichuan [24].

The Lianggaoshan Fm in the Northeast Sichuan Basin predominantly
represents delta-lacustrine facies, with a thickness ranging from 1500 to 4000
meters. During the sedimentary period of the Lianggaoshan Fm, a large-scale
lake transgression event took place. The internal terrain slope increased, and
the surrounding structures rose rapidly [25]. Overall, the formation is mainly
composed of semi-deep to deep lake deposits. Additionally, there are some
delta deposits in the northwest and east, which supplied clastic materials to
the lacustrine facies.

With the successful development of Well Ping’an 1 (yielding a daily output
of 112.8 cubic meters), the shale oil of the Lianggaoshan Fm in the Northeast
Sichuan Basin achieved a historic breakthrough in 2020. This milestone
marks the Sichuan Basin as poised to become the core of China’s future shale
oil exploration and development [26]. Actual exploration has demonstrated
that shale oil production in the study area has reached a historic breakthrough,
fully highlighting extensive shale oil resource prospects. This not only
contributes to the evaluation of lacustrine shale oil exploration in China but
also underscores the strategic significance of this region in the context of
national shale oil development [23].
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Fig. 1. Geological overview map of the Lianggaoshan Formation study area in the
Northeast Sichuan Basin.

2.2. Research methods

Actotal of 20 fresh outcrop shale samples were collected from the Lianggaoshan
Fm in the Northeast Sichuan Basin, and 15 valid samples were selected for
subsequent experiments after preliminary screening (excluding samples
with obvious weathering, fractures, or impurity contamination to ensure
experimental reliability). Rock thin-sections were prepared from the collected
samples for identification under a polarized-light microscope. The collected
samples were manually ground into powder and sieved to a standard of 80—
100 mesh. These powder samples were then utilized for geochemical
experiments, including X-ray diffraction (XRD), TOC analysis, carbon dioxide
(CO,) adsorption, and nitrogen adsorption experiments. For the high-pressure
mercury intrusion experiment and SEM analysis, block samples measuring
0.5¢ x 0.5 x 0.5 cm were fabricated.

For thin-section identification under polarized-light microscopy, a Leica
DM4 P polarizing microscope was employed. Observation magnifications
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of 100x were used for overviews of bedding morphology, while 400x
magnification was applied for characterizing mineral/pore details. Five fields
of view were selected from each thin section for bedding type classification
to ensure representativeness. XRD analysis was performed using a Rigaku
Ultima IV diffractometer with a Cu Ko radiation source (A= 1.5406 A).
The scan range was 5-80° (20) with a step size of 0.02° and a scan speed of
5°/min. Mineral content was calculated using the Rietveld refinement method
via MDI Jade 6.5 software.

TOC analysis employed a RIKEN CS744 analyzer. Samples underwent
10% hydrochloric acid pretreatment to remove inorganic carbon, followed
by analysis at 950 °C in an oxygen flow of 200 mL/min. TOC content was
determined by quantifying CO, produced from organic carbon combustion.
Gas adsorption experiments (CO,/N,) employed a JW-BK 132F analyzer.
Samples were vacuum-dried at 105 °C for one hour to remove adsorbed
water. CO, adsorption was conducted at 0 °C (30-second equilibration at
each pressure point), while N, adsorption occurred at —196 °C (60-second
equilibration at each pressure point). Pore parameters were calculated using
the Dubinin—Radushkevich (DR) model and Barrett-Joyner—Halenda (BJH)
model, respectively.

High-pressure mercury porosimetry was performed using a McMurry
AutoPore IV porosimeter (pressure range: 0.001-414 MPa, mercury contact
angle: 140°, density: 13.546 g/cm?®). Mercury intrusion/evacuation curves

Identification of lamina types Making thin slices

Fig. 2. Experimental workflow for shale samples from the Lianggaoshan Formation.
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were automatically recorded to calculate macropore volume. SEM analysis
employed a Zeiss Gemini SEM 360 operating in secondary electron mode at
10-20 kV, with a working distance of 812 mm and magnification ranging
from 500x to 50 000x. Specimens were sputter-coated with a 5 nm gold layer
prior to observation to enhance conductivity.

Statistical analysis of experimental data was conducted using Origin 2024
software. Pearson correlation coefficient analysis was applied to evaluate
the relationships between TOC/mineral composition and pore-structure
parameters (e.g., pore volume, specific surface area), with the coefficient of
determination (R?) indicating fitting quality. For fractal dimension calculation
(FHH model), linear fitting of low-temperature nitrogen adsorption data was
performed. Each experiment was repeated three times, and the arithmetic
mean with standard deviation was reported (relative standard deviation, RSD
<5%) to ensure data reliability.

3. Experimental results

3.1. Classification of shale lithofacies

Through thin-section analysis, and based on the morphology of laminated
sedimentary structures, the shale laminations in the study area were classified
into three microscopic morphologies: straight, corrugated, and graded
types. Straight laminations display continuous development in the form of
straight stripes. Corrugated laminations generally present continuous wavy
development. Graded laminations bear resemblance to straight laminations;
however, the thickness variation between the bright and dark layers is
significant, and the change in grain size is prominent. XRD analysis reveals that
straight laminations possess the highest clay-mineral content, with corrugated
laminations having a slightly lower content, and graded laminations having
the lowest. In contrast, the content of quartz and feldspar is highest in graded
laminations, followed by corrugated and then straight laminations. In terms
of TOC content, straight laminations exhibit the highest values, corrugated
laminations have lower values, and graded laminations have the least.

This study integrates the research methodologies proposed by previous
scholars [27, 28]. In light of the multi-type lamina characteristics of shale
within the Lianggaoshan Fm in the Northeast Sichuan Basin, a lithofacies
classification scheme founded on “mineral composition—-TOC-lamina
morphology” was formulated [29-31]. Among these factors, TOC content
serves as a crucial parameter for differentiating lithofacies and can be
categorized into four grades: high-carbon (TOC content > 1.5%), medium-
carbon (TOC 1.0-1.5%), low-carbon (TOC 0.5-1.0%), and carbon-poor
(TOC < 0.5%). Minerals are designated as single-lithology when a single
component exceeds 50%, and as mixed-lithology when no dominant
component exists (with each component ranging from 25% to 50%).
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Table 1. Characteristics of shale lithofacies in the Qilixiang area of the Lianggaoshan
Formation, Northeast Sichuan Basin

Average mineral composition, %

Lithofacies types Laminated forms

Average TOC, %
Quartz Feldspar Clay Carbonate: Others ¢ i

low-carbon
straight-laminated
clay shale

362 @ 20 . 538 18¢ 53e 0.968e¢

L2 low-carbon
wavy-laminated
clay shale

9.4% 4.2 *50.22 0.6 | 4.8¢ ¢ 0.746

L3 - low-carbon
wavy-laminated
mixed shale

39.% 4.9 0497 35 *e29 *0.874

L4 - carbon-poor
graded-laminate
mixed shale

46500 6392452 £05% 1.5 ¢ 0338

3.2. Pore type characteristics from scanning electron microscopy

For the shale fabrics of different lithofacies types, the differences in pore
types and development characteristics were analyzed via SEM observations.
The classification of pore types adhered to the previous research scheme [31].
The pores observed under SEM were categorized into intergranular pores,
intragranular pores, organic-matter pores, and microfractures [32].

In the study area, samples of lithofacies types L1, L2, and L3 commonly
exhibit the distribution of organic matter and clay minerals, with well-
developed microstructures. Minerals such as feldspar and flaky mica are
distributed along bedding planes, within which intragranular pores have
developed. Intergranular and intragranular pores are the most prominently
developed pore types. Some intragranular pores have transformed into clay
minerals, while others are filled with honeycomb-like illite/smectite mixed
layers. The intergranular pores are filled with scaly kaolinite. The sample
surfaces are relatively dense. In L4-type samples, organic matter is mainly
present in interstitial form, while pyrite is dispersed and locally aggregated
(Fig. 3).
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b Qi

Frsr———

Fig. 3. Shale pore types of the Lianggaoshan Formation, Northeast Sichuan Basin:
(a) organic matter associated with clay minerals, with developed micropores;
(b) feldspar dissolved along cleavage forming intragranular pores; (c) scale-
like kaolinite and a small amount of illite filling intergranular pores, with dense
cementation; (d) granular calcite associated with a small amount of illite, with
developed intergranular pores; (e) clay minerals developing intergranular pores,
partially filled by organic matter, with strawberry-shaped pyrite visible; (f) feldspar
dissolved to form intergranular pores, partially transformed into clay minerals;
(g) scale-like kaolinite filling intragranular pores, with a small number of intergranular
pores developed; (h) clastic minerals dissolved to form intergranular pores, partially
transformed into clay minerals, with intercrystalline pores in clay minerals visible;
(1) massive organic matter enclosing fine clastic mineral particles, with clay minerals
developing a small number of micropores; (j) blocky organic matter developing pores.

3.3. Gas adsorption and high-pressure mercury intrusion experiments

CO, adsorption, nitrogen adsorption, and high-pressure mercury intrusion
experiments can effectively characterize the pore structure of shale across
the entire pore-size range [33]. Based on the [UPAC standards and previous
research, pores with diameters of 0-2 nm are classified as micropores, those
with diameters of 2—-10 nm are classified as mesopores, and pores with
diameters greater than 10 nm are classified as macropores [34, 35].
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The shapes of the CO, adsorption curves of shale samples remain
essentially unchanged, indicating that the micropore morphologies of shale
samples of different lithofacies are similar (Fig. 4a). According to the [UPAC
classification [34], the nitrogen adsorption curves correspond to type IV, and
the hysteresis loops exhibit characteristics of both types H2 and H3, reflecting
the presence of slit-shaped and bottle-shaped mesopores (Fig. 4b). For all
samples, during the mercury-injection stage of the mercury-intrusion curves,
the mercury-injection volume first increases slowly and then rapidly with
increasing pressure. During the mercury-withdrawal stage, the decrease in the
mercury-withdrawal volume is relatively gentle (Fig. 4c).

The CO, adsorption, nitrogen adsorption, and high-pressure mercury
intrusion experiments were respectively combined to characterize the pore-
size distributions of micropores, mesopores, and macropores in shale samples
of different lithofacies. Shale of various lithofacies in the Lianggaoshan Fm
shows a certain degree of development of various pore types, mainly
concentrated in micropores and macropores. The micropores of shale samples
in the Lianggaoshan Fm are primarily in the pore-size range of 0.73—1.22 nm,
the mesopores in the range of 2.08—6.27 nm, and the macropores in the range
of 11-100 nm (Fig. 5).
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Fig. 5. Pore-size distribution of shale reservoir space in the Lianggaoshan Formation,
Northeast Sichuan Basin. Abbreviations: D = pore diameter (nm), dV = differential
pore volume (cm?/g), dD = differential pore diameter interval (nm).

4. Discussion

4.1. Difference mechanism of pore structure in different lithofacies
shales

In this study, the pore volume was calculated employing the Barrett—
Joyner-Halenda (BJH) model, while the specific surface area was
determined by the Brunauer—Emmett-Teller (BET) model. For the shale
within the Lianggaoshan Fm, the micropore volume ranges from 0.0044
to 0.0051 cm?/g, the mesopore volume varies between 0.00227 and
0.00259 cm?/g, and the macropore volume spans from 0.00818 to
0.00876 cm?/g. The micropore specific surface area lies between 2.13902
and 2.29159 m?/g, the mesopore specific surface area ranges from 2.71345
to 2.943879 m?/g, and the macropore specific surface area is within 1.96937—
2.72285 m?*/g. These results indicate that macropores make the most substantial
contribution to the overall pore structure (Fig. 6).

This phenomenon can be ascribed to the combined effects of relatively
low TOC in this region and the presence of an adequate quantity of brittle
minerals (quartz and feldspar, with a combined content exceeding 40%) and
clay minerals (content >50%) [36]. The relatively low TOC content makes it
difficult for shale to generate irregular micropores, resulting in a pore structure
of low complexity. A certain proportion of brittle minerals helps preserve the
integrity of the pore structure and facilitates the formation of intergranular
and intercrystalline pores, as well as microfractures within inorganic minerals.
This, in turn, is conducive to enhancing the pore connectivity of shale [37].
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Fig. 6. Distribution map of shale pore volume and specific surface area of the
Lianggaoshan Formation, Northeast Sichuan Basin.

In lacustrine shale, the rough surfaces of clay minerals promote the
development of additional micropores, exerting a relatively pronounced influence
on the micropore structure. Simultaneously, they contribute to maintaining
reservoir stability and the optimal functionality of shale [38]. Additionally,
carbonate minerals can impact the pore structure of shale [39], presumably
because carbonate cements fill pores during the diagenetic process [40].

Based on the experimental results, this study summarizes the mechanisms
through which the pore structure is influenced under different lithofacies.

For L1 — low-carbon flat-laminated clay shale, it exhibits the highest TOC
and clay-mineral contents, along with the lowest brittle-mineral content,
suggesting a relatively high organic-matter content [41]. Micropores and
mesopores have a more favorable development potential compared to
macropores [42]. Moreover, this lithofacies is more prone to the formation of
numerous pores and microfractures, which significantly impact pore volume
and specific surface area [43]. This phenomenon exerts a notable influence
on the adsorption capacity of oil and gas resources within micropores [44].
Specifically, the quantity of micropores reflects, to a certain degree, the
hydrocarbon-generation capacity of shale reservoirs [45].

In contrast, for L4 — carbon-poor graded-laminated mixed shale, its lower
clay-mineral content makes it challenging to form micropores and meso-
pores [46]. As a consequence, the corresponding specific surface area and
pore volume are reduced. However, the increase in the volume and specific
surface area of macropores improves, to a certain extent, the transport and
diffusion of oil and gas resources within shale reservoirs [47].

The distinct pore-structure differences among the four lithofacies (L1-L4)
essentially reflect variations in their sedimentary environments and diagenetic
processes [48]. For L1 (low-carbon straight-laminated clay shale) and L2
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(low-carbon wavy-laminated clay shale), their high clay-mineral and TOC
contents are attributed to deposition in a semi-deep to deep lake environment
(Section 2.1). This environment featured stable water columns, weak
hydrodynamic conditions, and strong reducing conditions — favorable for
the preservation of organic matter and the accumulation of fine-grained clay
minerals [25, 28]. During early diagenesis, compaction of clay minerals
promoted the formation of intercrystalline micropores, while thermal
maturation of organic matter (R : 0.9-1.9%; Section 1) generated additional
organic matter pores, collectively enhancing micropore and mesopore
development [20, 35]. In contrast, L4 (carbon-poor graded-laminated
mixed shale) was deposited in a delta-front transitional environment, where
intermittent hydrodynamic disturbances led to the sorting and accumulation
of quartz and feldspar (brittle minerals) [25]. During diagenesis, the low
compressibility of brittle minerals prevented the collapse of intergranular
spaces, forming macropores dominated by intergranular and dissolution pores
(Fig. 3h). Meanwhile, the lack of organic matter (TOC <0.5%; Table 1) limited
the formation of organic micropores, resulting in a macropore-dominated pore
structure [32, 40].

4.2. Relationship between shale TOC content, mineral composition, and
pore-structure parameters

Based on the preceding mechanism analysis, this section conducts a
correlation analysis between TOC content, clay minerals, quartz, and pore-
structure parameters. It quantitatively evaluates the relationships between
shale lithofacies characteristics and pore-structure parameters, and explores
the differential characteristics of pore structures at different scales in shales of
various lithofacies.

TOC is positively correlated with the pore volume and specific surface
area of micropores and mesopores, and negatively correlated with those of
macropores. The pore volume of macropores and the specific surface area of
micropores and mesopores are more significantly affected by TOC content.
The correlation between the pore volume of micropores and TOC content is
slightly stronger than that of mesopores (Fig. 7a, c¢). This is because organic
matter is a significant contributor to micropore development, and TOC content
is closely related to the presence of organic matter [49]. During shale reservoir
formation, organic matter forms micropores during kerogen pyrolysis and
hydrocarbon generation [23]. These processes generate a large number of tiny
pores, increasing both pore volume and specific surface area of micropores.
Meanwhile, hydrocarbons generated during the maturation of organic matter
may cause some micropores to expand into mesopores, and direct mesopore
formation within organic matter may also occur, further increasing the pore
volume and specific surface area of mesopores [50].

Quartz content is negatively correlated with the pore volume and specific
surface area of micropores and mesopores, and positively correlated with those



Reservoir characteristics of Lianggaoshan Fm shales, NE Sichuan Basin 43

a) (b)
( 0.010
»=-0.00644x + 0.01441 »=0.00037x— 0.00786
0.010 | R>=0.9971 R>=0.94169
0.008
20.008 - R ;
: :
S »=0.00115x +0.00376 <0.006 y=-0.00044x + 0.00685,
£ 0.006 R =0.98318 E R =0.96737
E 2 _—
> >
2 L L
5 0.004 - »=0.00117x - 0.00123 50.004
=% > ~
R?=0.85669
.*0\0\.
0.002 - 0.002F  »=-0.00046x +0.00445
. ‘ . Rooown
0.6 0.8 1.0 12 14 39 40 41 42 43 44 45 46
TOC, %
(©) 4 (d) - Quartz, %
N »=—0.11046x +7.5407
32t -/‘ 3.0+ R>=091756
0 301 _501951x— 173044 o 281
5 R’ =0.89637 . %
Eﬂ 2.8+ E“ 26k
B B _
£ 26k = 2.24084x + 0.18907 g .l ¥ =0.00933x + 230558
8 R = 0.9270 g = . R?=0.99494
S 241 = b=
E] . 5 22+t
w wn
221
F y=-0.57895x +2.51333 20k
20tk % y=-0.07254x + 524648 =
1.8+ R?=0.89516
1.8 L 1 L 1 1 L 1 1 1 1 1 1 L 1 1
086 0.88 090 092 094 096 098 1.00 40 41 42 43 44 45 46 47 48 49
TOC, % Quartz, %

= Micropore ®  Mesopore 4 Macropore

Fig. 7. Correlation analysis between TOC, quartz content, and pore-structure parameters. Left
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content and pore parameters — quartz content vs. pore volume (b) and quartz content vs. specific
surface area (d).

of macropores (Fig. 7b, d). Quartz is relatively compact, and when its content
increases, it occupies space, potentially leading to areduction in the pore volume
of micropores and mesopores in shale. Macropores, however, are mainly
composed of large intergranular pores, fractures, and some dissolution pores.
Therefore, their pore volume is more easily affected by quartz content [24].
The specific surface area of shale pores is mainly contributed by micropores
and mesopores. An increase in quartz content dilutes, to a certain extent, the
contributions of other minerals with large specific surface areas — such as clay
minerals and organic matter — thus reducing the overall specific surface area
of the shale [51].
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Quartz, being an inert mineral with low chemical activity, rarely undergoes
dissolution during diagenesis. Thus, its increase occupies the space originally
available for clay minerals and organic matter, reducing micropore and
mesopore volume [36]. In contrast, feldspar —a reactive mineral found in
L3 and L4 lithofacies — is prone to dissolution under acidic diagenetic fluids
generated during organic matter maturation, forming intragranular dissolution
pores (Fig. 3b, f) [52]. This explains why L3 (feldspar content: 4.9%; Table 1)
has a slightly higher mesopore volume than L2 (feldspar content: 4.2%) —
feldspar dissolution partially compensates for the reduction in micropores
caused by quartz [40].

4.3. Relationship between TOC content, mineral composition,
and fractal dimension of shale

The fractal dimension is an effective method for quantitatively characterizing
the microscopic pore structure of shale reservoirs. It can be used to evaluate
the complexity and heterogeneity of shale pores. In this paper, the fractal
theory is applied to quantitatively characterize the pore-structure features
of the Lianggaoshan Fm shale. Based on experimental low-temperature
nitrogen adsorption data, the Frenkel-Halsey—Hill (FHH) fractal model was
established, and the fractal dimension parameters were calculated using the
established model [53, 54]. The formula for the FHH fractal dimension is as

follows:
InV = kln(ln(ﬁ)]+ C (1)

where V' represents the gas adsorption volume at adsorption equilibrium
pressure (cm?/g), k is the linear correlation coefficient (a constant related to
the adsorption mechanism), and C is a constant (the intercept of the linear
fitting curve for the FHH model). In this study, the entire relative-pressure
curve was analyzed using the low-temperature nitrogen adsorption data, with
capillary condensation as the adsorption mechanism. The fractal dimension D
is calculated as follows:

D=k+3 )

In this research, a quantitative analysis was conducted to examine
the relationships among TOC content, mineral components, and fractal
dimension. The objective was to explore differences in pore structures across
diverse shale lithofacies and to assess the impacts exerted by TOC content and
mineral components shale pore characteristics.

The calculated fractal dimension (D) of the Lianggaoshan Fm shale spans
from 2.51123 to 2.53098, while the coefficient of determination (R’) ranges
between 0.97061 and 0.98639. These values indicate a relatively high degree
of fitting (Fig. 8).
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Lianggaoshan Formation, Northeast Sichuan Basin.

A positive correlation exists between the fractal dimension and TOC content.
Specifically, as TOC content increases, the fractal dimension becomes larger,
signifying a more intricate pore structure (Fig. 9). Because micropores are
predominantly developed within organic matter, a lower TOC content corresponds
to a smaller fractal dimension, leading to a simpler pore structure [55].

Conversely, a negative correlation is observed between the fractal
dimension and quartz content. Owing to the stable crystal structure of quartz,
it presents a relatively regular and less complex pore structure. Hence, an
increase in quartz content results in a decrease in the fractal dimension [12].

The fractal dimension is positively correlated with feldspar content. This
is attributed to the fact that feldspar dissolution generates secondary pores,
augmenting the overall complexity of the shale pore structure [52].

Moreover, the fractal dimension also demonstrates a positive correlation
with clay-mineral content. This can be explained by the large specific
surface area of clay minerals, within which micropores and mesopores
are predominantly distributed, thereby contributing to a high level of pore
complexity [55].



46 Yuhang Zhou et al.

@) _ ®)
2.530

2.525

Q 2.520 Q 2.520

2.515 2.515 Fy=-0.0017x +2.58761

»=0,0263x +2.49957 R?=0.63058 o
Y
2510} R*=0.62156 2510
03 04 05 06 0.7 08 09 1.0 36 38 40 42 44 46 48
T Y 0
© OC, % @ Quartz, %
2.535 2.535

2.530

2.525 2.525

Q 2.520 Q2.520

2515 2.515
° o
3 =-0.00593x +2.49185 2510 3 =0.0228x + 2.40534
R?=0.80323 R?=0.75462
2.505 ' . ' 2.505 ' ' ' .
2 44

3 4 5 6 46 48 50 52 54
Feldspar, % Clay, %

2510

Fig. 9. Correlation analysis between the fractal dimension of Lianggaoshan Formation shale
and TOC, quartz, feldspar, and clay-mineral contents.

4.4. Relationship between pore characteristics and shale reservoir
potential

The pore-structure parameters (volume, specific surface area, and connectivity)
of the Lianggaoshan Fm shale directly determine their shale oil reservoir
potential, as verified by experimental data. Micropores and mesopores serve
as the primary carriers for adsorbed shale oil, whereas macropores facilitate
the storage of free oil [32, 52]. The L1 facies exhibits the largest micropore
volume (0.0051 cm?®/g) and the highest mesopore specific surface area
(2.94 m?%g), endowing it with strong adsorption capacity. This is further
supported by its TOC content (0.968%), as organic pores can absorb two to
three times more oil than inorganic pores [12, 50].

Macropores (diameter >10 nm) and microfractures serve as key flow
pathways for shale oil [37]. Facies L4 exhibits the largest macropore volume
(0.00876 cm?/g) and the highest brittle-mineral content (quartz + feldspar =
52.8%; Table 1), indicating superior pore connectivity.
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Within the study area, facies L1-L.3 — characterized by well-developed
micropores and mesopores with strong oil-trapping capacity — are suitable as
oil-rich reservoirs, whereas facies L4, dominated by macroporosity with good
fluid mobility, can serve as oil migration pathways. This reservoir—channel
coupling provides a geological basis for selecting favorable exploration
sections in the Lianggaoshan Fm of Northeast Sichuan [19, 23].

This study advances lacustrine shale reservoir research in three key aspects.
First, unlike previous studies focused on high-TOC marine shales (e.g.,
Longmaxi Formation, Barnett Shale), this work systematically characterizes
the pore structure of low-TOC lacustrine shales (TOC: 0.338-0.968%) in the
Lianggaoshan Fm. The findings demonstrate that even low-TOC lacustrine
shales can form effective reservoirs via clay interstitial pores and brittle-
mineral macropores, thereby supplementing understanding of lacustrine shale
reservoir genesis mechanisms [10, 24]. Second, by establishing an lithological
facies—pore structure-reservoir potential correlation model (Figs 6, 7, 9), this
study provides a quantitative method for evaluating low-TOC lacustrine shale
reservoirs, improving upon the qualitative facies classifications of earlier studies
[29, 31]. Third, the findings clarify the influence of sedimentary environments
(semi-deep lake and deltaic foreland) on pore development in the Lianggaoshan
Fm, providing a reference for predicting pore structures in analogous global
lacustrine shale sequences (e.g., Denver Basin, Wakamulta Fm).

5. Conclusions

Through a series of physical experiments and in-depth data analyses, this study
meticulously investigated the microscopic structural characteristics of shale
in the Lianggaoshan Formation. Lithofacies classification was accomplished
by comprehensively integrating the outcomes of thin-section analysis, X-ray
diffraction experiments, and TOC content measurements. Pore and fracture
features were examined microscopically using scanning electron microscopy.
Quantitative characterization of shale microstructures was conducted through
carbon dioxide adsorption, nitrogen adsorption, and high-pressure mercury
intrusion experiments. Based on nitrogen adsorption data, the fractal dimension
was calculated to explore the pore-structure features of the Lianggaoshan
Formation shale. Drawing on experimental results and subsequent analyses,
the following conclusions were reached:

1. The laminated shale of the Lianggaoshan Formation can be taxonomically
divided into four distinct lithofacies: L1 — low-carbon straight-laminated
clay shale, L2 — low-carbon wavy-laminated clay shale, L3 — low-carbon
wavy-laminated mixed shale, and L4 — carbon-poor graded-laminated
mixed shale. L1 shale exhibits the highest average TOC and clay-mineral
contents, whereas L4 shale contains the greatest quartz and feldspar
content. Organic matter and clay minerals are widely distributed in L.1—
L3 samples, where microfractures are well developed.
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In the Lianggaoshan Formation shale, the micropore volume ranges
from 0.0044 to 0.0051 cm?®/g, the mesopore volume from 0.00227
to 0.00259 cm’/g, and the macropore volume from 0.00818 to
0.00876 cm?/g. The specific surface area of micropores extends from
2.13902 to 2.29159 m?g, that of mesopores varies from 2.71345
to 2.943879 m?/g, and that of macropores ranges from 1.96937 to
2.72285 m?/g. TOC content and mineral composition exert a profound
influence on shale pore structure. TOC is positively correlated with the
pore volume and specific surface area of micropores and mesopores but
negatively correlated with those of macropores. Quartz content exhibits
a negative correlation with the pore volume and specific surface area of
micropores and mesopores, while demonstrating a positive correlation
with those of macropores.

The fractal dimension (D) of the Lianggaoshan Formation shale ranges
from 2.51123 to 2.53098, and the coefficient of determination (R?) ranges
from 0.97061 to 0.98639, signifying a relatively high degree of fitting.
The fractal dimension is positively correlated with TOC content —
lower TOC content corresponds to a simpler pore structure. Quartz,
with its relatively regular and less complex pore structure, exhibits a
negative correlation with the fractal dimension. Feldspar dissolution
enhances the complexity of the shale pore structure, thereby presenting
a positive correlation with the fractal dimension. Clay-mineral content,
characterized by high pore complexity, is also positively correlated with
the fractal dimension.
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Abstract. The composition of inorganic matter and the enrichment of trace
and rare earth elements (TEs and REEs) in the Neogene organic matter-rich
sediments in the Upper layer of the Aleksinac deposit (Dubrava block, Serbia)
were analysed. Correlation analysis clearly showed that TEs and REEs
are associated with SiOZ, AIZO_?, KZO, and TiOz, clastic minerals, clay, and
feldspar, as well as zeolite minerals natrolite and analcime, indicating that the
TEs and REEs were brought into the basin mainly by clastic material. Their
distribution indicates certain changes in the depositional environment during
the formation of these sediments. According to enrichment factors (calculated
in relation to World Oil Shales, Upper Continental Crust, and Post-Archaean
Australian Shale) and the degree of enrichment (relative to argillaceous rocks),
the Aleksinac oil shale shows significant enrichment in Mo, a lesser degree in
Sy, and possible enrichment in Cu. Therefore, there are no concerns regarding
toxic trace elements in the Aleksinac oil shale.
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1. Introduction

Oil shales are the subject of numerous research activities due to their economic
importance as a potential energy source and industrial raw material, since
they represent an important reservoir of organic carbon and trace elements.
The inorganic matter makes up the largest part of the oil shale, while the organic
matter (OM) is dispersed within it, most often forming a homogeneous mixture.
Generally, oil shales are characterised by fine lamination in which laminae of
mixed organic and mineral matter, and pure mineral material alternate [1]. Oil
shales vary in the content of the inorganic part, which commonly ranges from
60% to 90% [2].

As the prevalent part of oil shale comprises inorganic matter, the analysis
of mineral and chemical composition (major, trace, and rare earth elements)
is important for utilisation, economic-geological, environmental, and geo-
chemical aspects. Oil shales enriched in certain elements can be used as a
mineral raw material in metallurgy. From the economic-geological assessment
of oil shale deposits, the content of certain individual elements (e.g. V, Zn,
Cu, and U) may contribute to its greater value. On the other hand, during
the exploitation and processing of oil shales, there is a possible mobilisation
and concentration of elements, leading to their release into the water, air, and
soil. This is undesirable from the aspect of environmental protection and can
have a negative impact on the environment and health, especially if certain
elements are present in high concentrations [3-9].

The trace and rare earth elements (TEs and REEs, respectively) are
present in low concentrations in oil shale; they do not exist independently
and can be found in the form of organometallic compounds, embedded in the
crystal structure of minerals, or in a dispersed state on clay and oxyhydroxide
particles [10]. It has been proven that oil shales can be enriched in certain
TEs and REEs, as can other OM-rich sediments, e.g. coals [7, 11, 12].
Elevated concentrations of certain elements in oil shales can be determined by
comparing their contents with some ‘standard values’. The most commonly
used ‘standard values’ are the composition of the Upper Continental Crust
(UCC) [13-18], Post-Archaean Australian Shale (PAAS) [13], North American
Shale (NASC) [19-21], the average World Oil Shales (WOS) [22-26], and
argillaceous rocks [26]. The TEs enrichment and geochemical investigation
of OM-rich sediments also require an analysis of major element distribution,
as these elements are diagenetically stable and can reflect the sedimentary
background (terrigenous detrital influence) [27].

The Aleksinac oil shale deposit is the largest and richest oil shale deposit
in Serbia and has significant economic importance [4, 28]. Therefore, it is the
most investigated oil shale in Serbia, but studies on its inorganic composition
are rare. The aims of this study were to determine: (i) the composition of
inorganic matter; (ii) the geochemical association of elements; and (iii) the
enrichment of TEs and REEs. Outcrop samples from the Upper layer of
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the Dubrava block of the Aleksinac deposit were selected for this study.
The study’s findings may be useful for future exploration and utilisation of
oil shales.

2. Samples and analytical methods

2.1. Samples and geological background

The Aleksinac deposit was formed within the Great Moravian—South Moravian
Depression during the Neogene, within a lake basin that developed due to
tectonic activities, climatic conditions, and the inflow of water and clastic
material [28, 29]. According to some authors [29, 30], the area of the Aleksinac
basin was located on two geotectonic units, the Carpatho-Balkanides and the
Serbian—-Macedonian Massif, and the lake sediments were deposited in tectonic
depressions formed by the fragmentation of these two geotectonic units.
The Aleksinac basin is filled with Lower and Upper Miocene lake sediments.
However, oil shales were formed only during the Lower Miocene [3].
These sediments are characterised by the rhythmic appearance of different
lithological units and oil shales, indicating frequent sedimentation changes [29].
The Lower Miocene sediments are of lacustrine origin: they start with red
conglomerates, overlain by alluvial-lacustrine sandstones, with some sandy
shale and siltstone in the upper layers. Above these sediments, two layers
of oil shales (Lower and Upper) were deposited, with the Aleksinac Main
coal seam located between them. A layer of Upper Miocene marl, clay, sand,
and conglomerate unconformably covers the Lower Miocene complex. As a
result of complex tectonic movements, the Aleksinac deposit is divided by
fault zones into three main blocks from north to south: Dubrava, Morava, and
Logoriste [3, 30, 31]. According to certain characteristics of organic matter
and mineral base, the Aleksinac deposit is closest to the Green River shale, in
which the deposition of sedimentary rocks took place in a shallow reducing
environment of a stratified, brackish—saline alkaline lake [3, 29].

For this study, sediment samples were taken from the Dubrava block,
from the outcropping Upper oil shale layer. Sixteen samples (D1-D16) were
collected as discontinuous channel samples comprising a 250 m thick series,
from the top of the bituminous marl sequence to the bottom of the Upper oil
shale layer, just above the Main coal seam. The Upper oil shale layer is much
thicker and more accessible, and thus easier for exploitation and processing.
A detailed description of the lithostratigraphic column of the analysed samples
is provided in previous publications [32, 33].

Based on mineral composition, eight samples are defined as marlstones
(D2, D3, D5, D8, D12-D15), five as mudstones (D1, D4, D6, D7, D9), two
as calcareous mudstones (D10, D11), and one as calcareous marlstone (D16;
Table 1) [33].
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2.2. Analytical methods

2.2.1. Inductively coupled plasma optical emission spectroscopy

The content of major elements was determined by inductively coupled plasma
optical emission spectroscopy (ICP-OES, Thermo iCAP 6500). Lithium
metaborate (LiBO,) fusion was used to prepare sample solutions for the
analysis. The samples were mixed with LiBO, flux in graphite crucibles,
and the crucibles were then fused in a furnace at 900 °C for 15 min. After
cooling, the content from the crucibles was transferred into plastic bottles
and dissolved with 150 cm® of 3.5% HNO,. The samples were mixed using a
magnetic stirrer for an hour, then filtered and dissolved with deionised water
to a volume of 250.00 cm®.

2.2.2. Inductively coupled plasma mass spectrometry

The content of 39 TEs and REEs was determined by inductively coupled
plasma mass spectrometry (ICP-MS, Thermo X Series II ICP-MS). The
samples were prepared in the same way as for ICP-OES analysis. From the
obtained solution, 0.25 cm® was placed in a test tube and supplemented with
an internal standard solution to a volume of 5.00 cm®. The internal standard
solution contained 1.05 cm® of Rh solution (concentration 10 ppm Rh in
3% HNO,), 60 cm?® of concentrated nitric acid, and deionised water to a total
volume 0f2000 cm®. A rack of samples on both instruments (ICP-OES and ICP-
MS) comprised, in addition to samples, three analytical blanks, one internal
reference material (BEN), four certified reference materials (OU, SCO, ACE,
and GCN), and two standards (QC1 and QC2), which enabled a quick check
of analytical quality. Before analysing the prepared blanks, standards, and
samples, a high-purity standard (SD12) was used for instrument calibration
and stabilisation. ICP-OES and ICP-MS measurements were carried out in
triplicate.

2.2.3. Rock-Eval pyrolysis, elemental analysis, and XRD analysis

The total organic carbon (TOC) content was determined by Rock-Eval pyro-
lysis using a Rock-Eval 6 Standard analyser. The content of total sulphur (TS)
was measured with an elemental analyser (Vario EL 11I, CHNOS Elemental
Analyser, Elementar Analysensysteme GmbH). The mineral composition
was analysed with an XRD analyser (Bruker D8 Advance diffractometer).
The semi-quantitative mineral composition was obtained using TOPAS
Rietveld refinement software. Detailed procedures for these analyses are
provided in a previous paper [33].

2.3. Data analysis and calculation

Cluster analysis was performed using SPSS 20 to group the samples based
on similarities and differences. The same program was also used for the
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correlation analysis of parameters, while Microsoft Excel 2013 and Origin
2016 were applied for correlation between a smaller number of elements and
for graphical presentation. Principal component analysis (PCA) was performed
in Minitab 17 to reduce the number of variables necessary to describe the
dataset, to visualise the data structure, and to determine the association of
elements more easily.

Due to the low concentrations of TEs and REEs, an enrichment factor (EF)
is used to follow their distributions. The EF is used to describe the enrichment
of an element in sedimentary rocks (EF ), calculated as the ratio of the
concentration of an element (X) in the analysed sample to its content in certain
‘standard samples’. To minimise the dilution effect of OM and authigenic
minerals, element concentrations are normalised to Al, due to its resistance
to alteration processes. If Al resides within the detrital clay fraction of the
sediments (determined by the correlation of Al with Ti), it is appropriate to use
Al content for normalisation [34, 35]:

EF = (X/Al)

element X

/(X/Al)standard' ( 1 )

Furthermore, solid fossil fuels can be characterised based on the degree of
enrichment with a certain element (Q)) in relation to the concentration of that
element (K17) in argillaceous rocks (the most abundant sedimentary rock type,
including oil shale) [25]:

sample

Q,=C/K,, 2

where C, is the average concentration of the i element in the dry samples.
According to Q, values, caustobiolites (fossil combustible substances)
are classified into five groups: (i) <0.6 =noticeably depleted in TEs;
(i1) 0.6—1.4 = differ little in the amount of TEs; (iii) 1.4-2.0 = enriched
in TEs to a certain extent; (iv) 2.0-3.5 = noticeably enriched in TEs; and
(v) >3.5 = considerably enriched in TEs [25].

3. Results and discussion

3.1. Mineralogy and geochemistry of the investigated samples

3.1.1. Mineral composition

The semi-quantitative mineral composition of samples is presented in
Figure 1. Samples D1-D15 have similar mineral compositions, while sample
D16 notably differs.

Samples D1-D15 show variations in the concentrations of clays, feldspars,
quartz, carbonates, analcime, and natrolite (Fig. 1). The elevated content of
carbonate minerals distinguishes D2 and D13. The highest content of clay
minerals is found in samples D1, D6, D7, D9, and D10. The highest amount
of quartz is observed in samples D2, D5, and D13; it is present in a very low
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Fig. 1. Semi-quantitative mineral composition.

amount (0.48 wt%) in sample D4, while quartz is absent in samples D1, D6,
and D7. The highest content of feldspar minerals characterises samples D3—
D6 and D9. An elevated content of analcime is found in sample D4, followed
by samples D1 and D15. The highest content of natrolite is present in samples
D3-Ds.

The uniqueness of sample D16 is reflected in its significantly higher
content of authigenic carbonate minerals (accounting for 63.87 wt% of the
total mineral matter), the absence of terrigenous detrital minerals (feldspars)
and zeolite minerals (analcime and natrolite), and the presence of the sulphate
mineral bassanite, which is identified only in this sample.

3.1.2. Major elements

The contents of major elements in the analysed samples, together with TOC
and TS, are listed in Table 1.

Among the major elements, SiO,, ALO,, Fe O,, and CaO are the most
abundant, whereas TiO,, MnO, and P O are the least abundant (concentration
<1 wt%; Table 1). SiO, and Al,O, prevail in samples D1-D15, while CaO
dominates in sample D16. This is consistent with the mineral composition
of the analysed samples (Fig. 1). Samples D1-D15 are characterised by
increased content of constituents of clastic minerals SiO,, ALO,, K,O, and
TiO,, followed by Fe O,. AL,O, and SiO, are most abundant in clay minerals
and quartz (Si0,). In contrast, sample D16 is characterised by the prevalence
of CaO, which is in accordance with the dominance of carbonate minerals
(Fig. 1; Table 1). Furthermore, sample D16 has a lower content of all other
major elements. The elevated content of MgO in samples D1-D15 compared
to D16 (Fig. 1; Table 1) can be explained by the presence of dolomite in all

samples except D16 [33].
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Samples D1, D4, D6, D7, and D9 show the highest content of clastic
mineral constituents such as AlO,, SiO,, and TiO, [36-38]. Some of these
samples (D4, D6, D7) have the lowest TOC, probably due to the dilution effect
of OM with clastic material (Table 1). The highest TOC content characterises
sample D16, while samples D2, D10, D12, D13, and D15 also have relatively
high TOC.

On the basis of the major element contents, the same conclusion can be
drawn as from the mineral composition: there was a significant change in the
diagenetic environment after the deposition of the sediments represented by
sample D16, and also certain less pronounced variations during the formation
of the sediments represented by samples D15-D1.

3.1.3. Trace elements

The contents of TEs in the analysed samples are listed in Table 2. Based on
TE contents, sample D16 again differs significantly from samples D1-D15
(Table 2). Sample D16 is characterised by lower concentrations of almost all
analysed TEs, while only Cs, Sr, Cr, and Ni are found in higher concentrations
compared to samples D1-D15 (Table 2).

The obtained result can be attributed to changes in the origin of sedi-
mentary material and/or depositional conditions after the sediment deposition
represented by sample D16 (see Sections 3.1.1 and 3.1.2) [33]. Moreover,
this sample originated from the oil shale layer just above the Main coal seam.
In sedimentological terms, this shift indicates a change in the depositional
environment, since different conditions are necessary for their formation,
probably reflecting a transition from a wetland to a lacustrine environment.

The variations in analysed TE concentrations among samples D1-D15
indicate certain changes in the depositional environment during sediment
formation. Within this group, samples D1, D4, D6, and D7 stand out due to
their elevated concentrations of most analysed TEs. In contrast, samples D2
and D13 are characterised by the lowest TE concentrations. This pattern is
more visible on the dendrogram, which shows that the analysed samples are
divided into two main clusters: D1-D15 (I) and D16 (II; Fig. 2a).

Samples DI1-D15 are further divided into two subclusters. The first
subcluster (Ia) includes samples D3, D5, D8, D10-D12, D14, and D15, as
well as samples D2 and D13, which show slight separation, more pronounced
in sample D13. The second subcluster (Ib) comprises samples D1, D4, D6,
D7, and D9. The results are almost identical whether the cluster analysis is
conducted based only on TE contents (Fig. 2a) or using the contents of major,
trace, and rare earth elements, total organic carbon, and total sulphur (Fig. 2b).
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Fig. 2. Dendrograms of the studied samples derived from cluster analysis: (a) contents
oftrace elements and (b) contents of major, trace, and rare earth elements, total organic
carbon, and total sulphur.

3.1.4. Rare earth elements

The contents of REEs in the analysed samples are listed in Table 3. REEs are
present at lower concentrations in sample D16 compared to samples D1-D15
(Table 3; Fig. 3). Differences among samples D1-D15 can also be observed.
Samples D4, D6, and D7, followed by sample D1, have higher concentrations
of REEs, whereas samples D2, D5, D11, D13, and D14 contain lower amounts.
Furthermore, sample D4 shows elevated concentrations of all REEs except
Yb, which has the highest concentration in sample D1. Since samples D4, D6,
and D7 are characterised by relatively high contents of clastic constituents
(see Sections 3.1.1 and 3.1.2), it can be assumed that the REEs were probably
delivered into the depositional environment with clastic material.

Generally, in the analysed samples, light earth elements (LREEs) are
more abundant than heavy rare earth elements (HREEs; Table 3), which is in
agreement with the typical distribution of REEs in oil shale [20, 37—40]. Based
on PAAS-normalised REEs curves [13], it is also evident that sample D16 is
clearly distinguished, as are samples D4, D6, and D7 (Fig. 3). The samples
show no strong Ce anomalies, whereas several samples display negative Eu
anomalies (D2-D4, D9, D11, D12, D14; Fig. 3).

7
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Fig. 3. Distribution of rare earth elements.

3.2. Geochemical association of trace and rare earth elements

The organic and inorganic matter of oil shale may host sedimentary accu-
mulations of TEs and REEs. Their correlations with OM (i.e. TOC content)
and the contents of inorganic components were performed for samples D1—
D15, which originated from the same facies.

Regarding the OM, the correlation analysis shows that almost all TEs
and REEs exhibit statistically significant negative correlations with TOC.
A statistically significant positive correlation with TOC is observed for Sr
only (at a significance level p <0.05), whereas Cs, Be, Ba, Zr, Nb, Ta, Cr, W,
Cu, Ga, TI, Sn, and Pb (p <0.01); Rb, Hf, V, and Zn (p <0.05) from TEs; and
La, Ce, Pr, Nd, and Sm (p <0.05) from REEs showed significant negative
correlations with TOC. This leads to the assumption that TEs are not associated
with the OM of the examined sediments.

Statistically significant positive correlations with TOC are observed for
major elements CaO and MgO (p <0.05), as well as for carbonates and quartz
(p <0.01), whereas SiO,, AL, O,, K,O, TiO,, and Fe,O, exhibited negative
correlations (p <0.01). Considering that carbonate minerals have an authigenic
origin, while quartz can have both authigenic and detrital origins, these
correlations could imply that part of the quartz in the investigated samples has
an authigenic origin [41, 42].

This is clearly evident in the loading plot obtained from the PCA (Fig. 4).
The PCA resulted in a two-component model explaining 44.44% of the total



66 Gordana Gajica et al.

037

0.2

(=]
—
L

Quartz
MgO

TOC /
CarbonatesCag

PC2 (11.65%)
<o
2

-0.17

-0.27

-0115 -0110 -O.I()S 0.60 0.65 O.IIO 0.I15 O.IZO
PC1 (32.79%)

Fig. 4. Loading plot based on principal component analysis of minerals, major, trace
and rare earth elements, TOC, and TS composition.

variance in the investigated dataset (minerals, major, trace, and rare earth
elements, TOC, TS). The first principal component (PC1) accounted for
32.79% of the overall data variance, whereas the second (PC2) accounted for
11.65%.

Regarding the inorganic part, most of the examined TEs show statistically
significant positive correlations with constituents of clastic minerals (SiO,,
AlO,, K, 0, and TiO,), clastic minerals (clay and feldspar), the zeolite mineral
natrolite, and some TEs with analcime. On the other hand, negative correlations
are observed between TEs and TOC, CaO, MgO, carbonate minerals, and
quartz (Fig. 4). This confirms that TEs were brought into the basin mainly by
clastic material, as expected.

The concentration of REEs shows statistically significant positive
correlations with constituents of clastic minerals (Al,O,, TiO,, SiO,), followed
by P,O,,Fe O,, and Na O, but negative correlations with TOC, CaO and MgO,
carbonate minerals, and quartz. Furthermore, LREEs and HREEs exhibit
some differences in correlations. Namely, LREEs and HREEs show different
significance of positive correlations with Na O: the LREEs demonstrate
a positive correlation with SiO, (p <0.05) and TiO, (p <0.01), whereas the
HREEs display a positive correlation with P,O, (p <0.01) and TiO, (p <0.05;
Fig. 4). Positive correlations of U and Th with P,O, might indicate the presence
of phosphate minerals monazite, xenotime, and apatite, together with heavy
minerals (ilmenite, leucoxene, rutile, zircon) [43]. It is known that these
minerals can be the source of REEs, as well as U and Th [44, 45]. Since XRD
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analysis is not sensitive to less than 5 wt% of the crystalline phase present in
the sample, it can be presumed that this technique did not identify the minerals
mentioned above due to their low content.

3.3. Trace and rare earth elements enrichment

The average trace element concentrations of the analysed oil shales (AOS),
the average World Oil Shales (WOSsp [25], WOSw [21, 22]), Upper Continen-
tal Crust (UCC, [12, 13, 16]), Post-Archaecan Australian Shale (PAAS, [12]),
and argillaceous rocks (K1i, [25]) are presented in Table 4. The enrichment
factor (EF) and the degree of enrichment (Qi) are used to assess elemental
enrichment in sedimentary rocks. The calculated EF and Qi of the analysed
elements in the Aleksinac oil shales are given in Table 4. Furthermore, the
range of element concentrations in oil shale ash from different deposits
in Jordan (JOSa; Attarat Umm Al-Ghudran, El-Lajjun, Sultani, Jurf Al-
Drawaish, Assfar Al-Mahata, Wadi Abu-Hmam, and Al-Shalaleh, [46]) are
also presented in Table 4.

Based on the EF, meaningful enrichment of an element starts from values
>3 [10], while if EF > 1, it can be only considered as a detectable enrich-
ment [47]. In the analysed sample set for TEs, EF >3 is found for Mo (in
relation to WOSsp*, WOSw, UCC, PAAS), Sr (PAAS), and Cu (UCC; Table 4;
Fig. 5). Therefore, it can be said that Mo shows significant enrichment, Sr to
a lesser degree, and Cu to a possible degree.

Among REEs, some elements (Pr, Sm, Eu, Tb, Ho, Tm, Lu) show enrich-
ment with respect to WOSw (Table 4; Fig. 5). The total average concentration
of REEs in AOS is 118.88 ppm, which is lower than in WOSw (216.80 ppm),
[21,22],UCC (146.37 ppm) [12, 13, 16], and PAAS (183 ppm) [12]. The degree

100

10

EF

0.1

W EF(WOSsp*)
EF(WOSw)
B EF(UCC)
W EF(PAAS)
|
‘ﬁ | 4
Rb Cs Be Sr Ba S¢ Zr Hf V Nb Ta Cr Mo W Co Ni Cu Zn Ga Sn Pb Th U Y La Ce Pr Nd Sm Fu Gd Tb Dy Ho Er Tm Yb Lu

Fig. 5. Enrichment factors.
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of'enrichment for the investigated TEs was also determined based on Qi values
(Table 4). Results suggest that the analysed oil shales are noticeably enriched
in Mo and Cs and belong to the fifth group according to the classification
proposed by Shpirt and Punanova [25]. Furthermore, they are enriched to a
certain extent with Cu, U, and Sc, belonging to the third group, while analysed
samples are noticeably depleted in Ba, Zr, Hf, Sn, La, and Yb and belong to
the first group. The remaining TEs are in the second group, which indicates
that the examined oil shales and argillaceous rocks differ slightly in the
concentrations of these TEs.

Comparing the range of concentrations in oil shale ash from different
deposits in Jordan with values in the analysed samples, it is notable that most
elements fall within the range, while the following elements show higher
concentrations in the analysed samples: Be, Sc, Co, Cu, Ce, Pr, Sm, Eu, Gd,
Tb, Dy, and Ho [46].

4. Conclusions

The detailed inorganic geochemical characterisation of the Upper layer of
Aleksinac oil shale in the Dubrava block was performed. The cluster analysis
of major, trace, and rare earth elements, total organic carbon, and total sulphur
showed that the analysed samples are divided into two main clusters, indicating
certain changes in the depositional environment during the formation of these
sediments.

Correlation analysis clearly showed that TEs and REEs are associated with
Si0,, ALO,, K,O, and TiO,, clastic minerals, clay, and feldspar, as well as
zeolite minerals natrolite and analcime, indicating that TEs and REEs were
brought into the basin mainly by clastic material. Taking into account both
the enrichment factors (calculated in relation to World Oil Shales, Upper
Continental Crust, and Post-Archaean Australian Shale) and the degree of
enrichment (concerning argillaceous rocks), it can be concluded that the
Aleksinac oil shale is slightly enriched only in Cu, Cs, Sr, V, Ni, Zn, Pb,
and U, whereas more significant enrichment is observed for Mo exclusively.
The mentioned elements, except Cs, Sr, and Pb, are redox-sensitive, and
therefore their enrichment is in accordance with the OM-richness of the
studied samples.

Compared with ‘standard values’, there is no significant enrichment of
elements potentially toxic to the environment and health in the analysed
sediments, except for Mo and Cu. Therefore, there is a low risk of trace
element pollution if the Aleksinac oil shale were to be further exploited.
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Abstract. To determine the characteristics of the palaeoenvironment that
affected organic richness, the Neogene organic-rich sediments in the Upper
layer of the Aleksinac deposit (Dubrava block, Serbia) were examined.
The studied samples are presumed to be of andesitic to felsic origin, with
evidence of volcanic activity. Sediment generation was influenced by hydro-
thermal fluids, which promoted the productivity of aquatic organisms and led
to organic enrichment. Clastic input brought trace and rare earth elements
into the basin. Palaeoenvironmental indicators derived from concentrations
of major, trace, and rare earth elements show good accordance with organic
geochemical data obtained in previous detailed studies, indicating deposition
of the sediments in an anoxic lacustrine environment of variable salinity under
warm, arid, and semiarid/semihumid climatic conditions. Such settings favoured
primary bioproductivity in the lake, whereas a stable, stratified water column
with highly reducing bottom water enhanced organic matter preservation.
The lowering of total organic carbon content was mainly controlled by more
humid episodes that promoted clastic influx and decreased organic matter
concentration, rather than by changes in anoxic redox conditions.
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1. Introduction

Oil shale is mostly composed of inorganic matter, with organic matter (OM)
dispersed within it, forming a homogeneous mixture. It is often characterised by
fine lamination that alternates between laminae of mixed organic and mineral
materials and pure mineral material. Although OM is present in a seemingly
small percentage, it is very important, since it mainly contains kerogen types |
and I, which have great potential to produce liquid hydrocarbons under suitable
geological conditions or through thermal processing [1]. Low concentrations
of trace and rare earth elements (TEs and REEs, respectively) can be found
in oil shale. These elements do not exist independently and may be present
as organometallic compounds, embedded in mineral crystal structures, or in
a dispersed state on clay and oxyhydroxide particles [2]. Their distributions
are mainly influenced by the geochemical cycle of elements and controlled by
the physical and chemical characteristics of their atoms or ions, as well as by
biotic and abiotic factors in the depositional environment [3, 4].

The analysis of the inorganic matter in oil shale can be used to reconstruct
the geological history of the study area based on the content and distribution
of elements, as well as corresponding geochemical parameters. This, in
turn, allows us to determine the source material and palacoconditions in the
depositional environment that contributed to OM supply, its preservation,
and the formation of organic-rich sediments, such as oil shales [1]. The main
factors that control OM enrichment are palaeobioproductivity, conditions in
the palaeoenvironment (climate, salinity, and redox potential), and the influx
of clastic material [5—12].

Although the Aleksinac oil shale deposit is the largest and richest oil shale
deposit in Serbia and of economic significance [13, 14], there are only a few
studies on its inorganic composition. Therefore, the aims of this study were:
(i) to establish comprehensive characteristics of the palacoenvironment that
affected the organic richness of the sediments based on inorganic proxies, and
(i1) to examine the compatibility between inorganic and organic geochemical
parameters. The results of this study may serve as a valuable archive of
palaeoenvironmental information on the area and can be transposed to other
geological scenarios.

2. Samples and analytical methods

2.1. Samples

Outcrop samples from the Upper layer of the Dubrava block of the Aleksinac
deposit were selected for this study. In previous publications, a detailed
description of the lithostratigraphic column of the analysed samples has been
provided [15, 16], as well as in Part A of this study (see this issue).
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2.2. Previous results

The origin, depositional environment, maturity and hydrocarbon generation
potential of the organic matter, derived from the comprehensive OM
characterisation of the analysed samples, are detailed in prior studies [15-17].
To have a better understanding of the depositional environment, these results
are utilised to correlate with inorganic geochemical parameters but are not
presented in this work. In this section, the main findings obtained previously
are summarised, as they will be used to correlate with inorganic parameters.

The OM is uniformly immature, with total organic carbon (TOC) content
varying between 1.31 and 29.10 wt% (corresponding to vitrinite reflectance of
0.36—0.44% and a production index 0f 0.01-0.02). Sample D16 has the highest
OM content, whereas samples D4, D6, and D7 have the lowest. According
to Rock-Eval data, the OM mainly consists of a mixture of kerogen types I
and II. The samples that stand out are sample D13, which contains exclusively
kerogen type I, and samples D4, D6, and D7, which contain kerogen type 11
with a certain input of kerogen type I11.

The biomarker patterns are in accordance with the Rock-Eval data,
revealing a significant presence of aquatic organisms, including green and
brown algae, as well as bacteria, with a moderate influence from higher-plant
organic matter [16, 17]. Based on the thermal decomposition of kerogen, all
samples show a high potential for oil generation. Only samples D4, D6, and
D7 have a slightly lower potential, which agrees with the type of kerogen in
these samples [15-17].

The OM was deposited in a reducing lacustrine environment characterised
by alkaline, brackish to freshwater conditions and water-column stratification,
most likely as a result of variations in water depth, salinity, and temperature
during the formation of the analysed sediments [16]. According to biomarker
patterns in the samples under investigation, sample D16 differs most from the
others [16, 17]. A shallow water column may have contributed to the relative
abundance of C,, hopane in sample D16, whereas a steranes/hopanes ratio <1
suggests a higher presence of prokaryotic OM than algal.

2.3. Analytical methods

For the determination of major elements, inductively coupled plasma optical
emission spectroscopy (ICP-OES, Thermo iCAP 6500) was used, whereas
for TEs and REEs, inductively coupled plasma mass spectrometry (ICP-MS,
Thermo X Series II ICP-MS) was applied. The mineral composition was
analysed using an XRD analyser (Bruker D8 Advance diffractometer). A Rock-
Eval 6 Standard analyser was employed for the determination of TOC, and
an elemental analyser (Vario EL I1I, CHNOS Elemental Analyser, Elementar
Analysensysteme GmbH) for total sulphur (TS) content. Detailed analytical
procedures are given in Part A of this study.
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3. Results and discussion

3.1. Genesis and depositional environment of organic-rich sediments

Many geochemical parameters (Table 1) were used to determine sediment
provenance, tectonic settings, the influx of hydrothermal fluids, palaecobio-
productivity, clastic influx, palaeoconditions in the water column (redox
potential, salinity), and climatic conditions, in order to get a better insight into
the depositional environment and the genesis of organic-rich sediments of the
Aleksinac deposit. The element concentrations on which the parameters were
calculated are given in Part A of this study (section 3.1).

3.1.1. Sediment provenance

It is well known that the nature of the parent rocks influences the composition
of sedimentary rocks [18-21]. The Al/Ti ratio and the Al vs Ti diagram are
used to determine the provenance of sedimentary rocks because Al and Ti
have low solubility in water. Therefore, their ratio is relatively close to that
of the source rocks [20, 22-24]. Most samples have Al/Ti ratio values around
20, i.e. within the range of 821, which indicates intermediate igneous rock
sources (Table 1) [20]. A few samples (D1, D4, D11) have values slightly
higher than 21, signifying an origin from felsic igneous rocks. However, all of
them are plotted near the boundary line between intermediate and felsic rocks,
except for sample D16 (Al/Ti = 34; Table 1), which relates to a felsic source
(Fig. 1a) [20].

The Ti vs Zr, Th/Sc vs Zr/Sc, and Co/Th vs La/Sc diagrams are also used
to determine sediment provenance, since La, Th, Co, and Sc are immobile
elements whose distribution is less affected by the heavy-mineral fraction
than TEs such as Zr, and they are only weakly influenced by diagenesis and
metamorphism [18, 24, 28]. Furthermore, La and Th are more concentrated
in felsic rocks, whereas Sc and Co are more abundant in mafic rocks [26, 29].
In the Ti vs Zr diagram (Fig. 1b), all samples are located in the area of
intermediate igneous rocks; only sample D16 is at the border between inter-
mediate and felsic igneous rocks. In the Th/Sc vs Zr/Sc diagram (Fig. 1¢) [18],
all analysed samples are plotted in the area of felsic source rocks and have
not experienced sedimentary recycling. Consistent with the results from
Figure 1c, the Co/Th vs La/Sc diagram (Fig. 1d) suggests that most of the
analysed samples correspond to a source between andesite and felsic volcanic
rocks. According to this diagram, samples D11, D14, and D16 are more closely
related to andesites and can be distinguished from the others.

A volcanic origin is not surprising, since volcanic activity in the area of the
Aleksinac deposit during the Miocene has been proven, and volcanic material
was transported into the lake in smaller amounts but over a longer period
[30, 31]. Further evidence of volcanic activity is the presence of zeolite-group
minerals — analcime and natrolite — in all samples except D16 (fig. 1 in Part A).
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Fig. 1. Source discrimination diagrams: (a) TiO, vs AL, O, (b) TiO, vs Zr, (c) Th/Sc vs
Zr/Sc, and (d) Co/Th vs La/Sc.

According to Obradovi¢ and Vasi¢ [31], analcime in the Aleksinac deposit
formed through the alteration of volcanic glass, and it can also be formed by
the decomposition and alteration of the earlier-phase zeolite mineral natrolite
[32].

The REESs can also be used to determine sediment provenance owing to their
chemical stability during different processes such as erosion, transportation,
weathering, deposition, and diagenesis [18, 33, 34]. The analysed samples
are characterised by high LREE/HREE ratios, which is typical of felsic rock
provenance (Table 1; fig. 3 in Part A) [26, 28, 29, 35]. In oil shale, their main
sources are terrigenous inherited minerals and authigenic components [36].
The statistically significant positive correlations of REEs with constituents
of clastic minerals and negative correlations with carbonates (section 3.2 in
Part A) indicate a terrigenous origin.

3.1.2. Tectonic settings

The plate tectonic settings of the sediment source area are important due to
terrain-specific signatures and influence on the geochemical composition of
deposited sedimentary rocks [23, 37—40]. Some elements are inactive during
transportation and deposition, and therefore reflect different tectonic settings
[39, 41].
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The cross-plot K/Na vs Si (Fig. 2a) shows that most of the analysed samples
were deposited in an active continental margin, while only samples D5, D6,
and D9 correspond to a passive continental margin [40, 42]. Conversely, the
ternary diagrams Ca—K—Na and La—Th—Sc [39] show that most of the analysed
samples plot within the field of a continental island arc (Fig. 2b).

The results imply that the sediments developed in terrain with the character-
istics of an active continental margin built on a continental island arc. The ob-
tained data are not surprising, since the region of the Aleksinac deposit is known
for its very complex tectonic settings, caused by the convergence of several
oceanic and continental entities in the Tethyan realm between the African
and European plates [43]. This resulted in the formation of four geotectonic
units: the Dinarides, Carpatho-Balkanides, Serbian—-Macedonian Massif, and
Pannonian Basin [14, 43, 44]. According to Obradovi¢ and Vasi¢ [31],
the Aleksinac deposit was formed by the fragmentation of two geotectonic
units, the Carpatho-Balkanides and the Serbian—-Macedonian Massif.
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Fig. 2. Tectonic setting discrimination
diagrams: (a) major elements K/Na vs
Si, (b) Ca—Na-K, and (c) trace elements
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island arc; B — continental island arc;
C — active continental margin; D —
passive continental margin.
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3.1.3. Hydrothermal fluids

Hydrothermal fluids mainly occur due to volcanic eruptions, lithification
processes, and atmospheric deposition, causing the input of certain elements
into deposits. They play a significant role in different geological processes.
A large amount of minerals and nutrients can be transported into the lake
by hydrothermal fluids, which usually promote the productivity of aquatic
organisms and, consequently, may lead to OM enrichment in sediments [45, 46].

TEs (Zn, Ni, Cu) and REEs (La, Ce) can be enriched in hydrothermal fluids
and, therefore, can be used to estimate whether the depositional environment
was affected by hydrothermal fluids [47—49]. Furthermore, the Co/Zn vs
Co + Cu + Ni (Fig. 3a) [50] and La vs Ce (Fig. 3b) [49] cross-plots, as well as
the Ni-Co—Zn ternary diagram (Fig. 3c) [47, 51], were used for the estimation
of hydrothermal influx.

The obtained results indicate that hydrothermal fluids influenced the
analysed samples, whereas this influence was least pronounced, or absent, in
sample D16 (Fig. 3). As noted previously, during the Lower Miocene there
was noticeable volcanic activity (Section 3.1.1), thus the hydrothermal impact
is not surprising. Additional evidence for hydrothermal fluids is provided by
the presence of hydrothermal zeolite minerals, analcime and natrolite [52],
identified in all samples except D16 (fig. 1 in Part A).
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3.1.4. Palaeobioproductivity

The content of biogenic elements is associated with biological growth and can
be used for the estimation of palaecobioproductivity, which is one of the main
factors controlling OM content in sedimentary rocks [5, 48]. The Ba content
is often used for the qualitative assessment of palacobioproductivity, as the
Ba cycle in sediments is controlled by OM content in the depositional
environment [48, 53]. The Ba/Ti and Ba/Al ratios can be used to eliminate
the dilution effect of OM and authigenic minerals in relation to the Ba
concentration in terrigenous detrital matter [54].

The strong correlation between Ti and Al (r=0.97, p<0.001) in the
analysed samples indicates that Al originates from terrigenous detrital matter
and that biogenic processes did not affect Al concentration; thus, these ratios
can be used [55]. The highest values of Ba/Ti and Ba/Al ratios are found in
samples D13 and D16, which agrees with the greatest TOC content in these
samples (Table 1; table 1 in Part A). Furthermore, Ba/Ti and Ba/Al ratios
correlate well with TOC contents in samples D1-D15 (r=0.70, p <0.01;
0.68, p <0.01, respectively; Fig. 4a).

The TOC content is controlled by primary bioproduction, along with redox
conditions and the influx of terrigenous detrital matter into the water column.
The diagram of the Cu/Mo ratio vs Cu can be used to distinguish whether the
formation of organic-rich sediments resulted from increased bioproductivity
or from reducing conditions [56, 57]. Specifically, high bioproductivity is
usually associated with elevated Cu content, whereas Mo concentration has
no impact [58]. Conversely, both Cu and Mo are enriched under anoxic
conditions. Some enrichment of these elements is found in the analysed
sediments (table 1 and fig. 5in Part A). A weak statistically significant negative
correlation between Cu/Mo and Cu (r = 0.44, p = 0.10; Fig. 4b) shows that, in
addition to palacobioproductivity (Fig. 4a), the enrichment of sediments in OM
was also controlled by reducing conditions in the depositional environment.
The same conclusion was derived from organic geochemical proxies, including
the pristane/phytane ratio, gammacerane index, and abundance of B-carotane,
as discussed in detail in earlier research [16].

Furthermore, the differences in TOC among DI1-D15 samples can also
result from varying influxes of clastic material. This is confirmed by the
statistically significant positive correlation of TOC with the CaO/SiO, ratio
(r=0.73, p<0.01; Fig. 4c) and will be discussed in more detail in the next
section.
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clastic elements = (Ti + Al + Si); > TCE — sum of trace elements = (Zr + Th + Nb + Hf
+ La + Ce); > CE — sum of clastic elements = Y MCE + > 'TCE.
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3.1.5. Influx of clastic material

The clastic influx can induce both OM preservation (through a faster sedimen-
tation rate, which reduces the intensity of OM degradation by aerobic microbial
communities in the water column) and the dilution of OM concentration
(through increased input of clastic material). In addition, clastic influx affects
the type of both mineral and organic matter in the oil shale [24]. Furthermore,
a greater input of clastic material increases nutrient supply, which can cause
blooms of aquatic organisms and facilitate OM enrichment [9]. Concentrations
of major clastic elements (MCEs; Ti, Al, and Si) and trace clastic elements
(TCEs; Zr, Th, Nb, Hf, La, and Ce) are used as proxies for clastic influx [59, 60],
since they are chemically stable during transportation, weathering, and
diagenesis [61].

The Ti/Al ratio is used because Ti and Al mainly occur in clastic minerals
of terrigenous origin, with Al representing aluminosilicate minerals and Ti
occurring in clay and heavy minerals [6, 41, 62, 63]. Statistically significant
positive correlations of Al with Ti, K, and Na (r=0.97, p=2.3 x 107,
r =0.86, p<0.01; r =0.75, p<0.01, respectively; Fig. 1a) indicates that
these elements are associated with clastic material [64], while the correlation
between Ti and Al implies that the clastic influx was probably derived from a
constant source (Section 3.1.4) [65, 66]. The Ti/Al ratio values in all samples
are relatively uniform (0.04—0.05), with only sample D16 slightly lower
(Ti/A1=0.03; Table 1). Additionally, similar REE distributions (fig. 3 in
Part A) show a consistent source during sediment formation, closely connected
with terrigenous clastic rocks, implying a stable terrestrial material supply [33].

The Si/Al ratio is used as a clastic influx proxy, representing the presence
of quartz in relation to clay minerals, because Si has both clastic and
biogenic origins, while Al is exclusively terrigenous [62, 67]. The values of
this parameter range between 2.41-3.52. Samples D1, D4, and D6 have the
lowest values, whereas samples D16, D13, and D2 have the highest (Table 1).
Furthermore, a statistically significant negative correlation between Ti and the
Si/Al ratio (r = 0.90, p <0.01; Fig. 4d) indicates that a certain amount of silica
originates from non-detrital input [68, 69]. Moreover, a moderate positive
correlation between quartz content and TOC (r = 0.68, p <0.01; Fig. 4e) can
be indicative of a partly biogenic origin of silica from siliceous organisms
(e.g. SiO,-rich plankton) [70, 71], suggesting that OM and part of the silica
were deposited and buried together [69].

The obtained Ti/Al results indicate that the detrital influx was relatively
constant and, therefore, could not have been a critical factor controlling
variations in OM enrichment among the studied samples (r=0.51, p = 0.05;
Fig. 4f). Conversely, the Si/Al ratio values suggest certain differences among
samples D1-D15 and show a stronger correlation with TOC (r=0.70,
p <0.01; Fig. 4g). Therefore, clastic influx could have been a significant
factor influencing the formation of these organic-rich sediments. This is more
evident when concentrations of clastic mineral constituents are used as proxies
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for clastic influx (Fig. 4h). In Figure 4h, the strong negative correlations
of TOC with MCEs and TCEs (r Y MCE =0.86, p <0.01; r > TCE =0.70,
p <0.01;r YCE =0.77, p <0.01) clearly indicate that clastic influx resulted in
a decrease of OM concentration in the studied samples. Furthermore, the trend
of samples in Figure 4 corresponds well with TOC values (table 1 in Part A).

3.1.6. Conditions in the palacoenvironment

Climate, salinity, and redox potential are the main palaeoenvironmental
proxies that control OM accumulation and preservation. The palaeoclimate is
determined based on the C-value, and the Sr/Cu and Rb/Sr ratios; palacosalinity
is indicated by the Sr/Ba and Ca/(Ca + Fe) ratios, and REE distribution, while
palacoredox conditions are assessed by the EFs of Mo, U, V, Cu, and Ni, the
V/(V + Ni) and V/Zn ratios, as well as by the Eu anomaly.

3.1.6.1. Climate

Most processes in the lacustrine depositional environment are controlled by
climate, as it affects OM productivity, the influx of terrigenous material, and
OM preservation during sediment formation [72, 73]. Consequently, according
to some authors, climate can be a significant factor in the formation of OM-
rich sediments (e.g. [6]).

The C-value is used to determine climate, since Fe, Mn, Cr, V, Ni, and Co
are enriched in sedimentary rocks under humid climatic conditions, while Ca,
Mg, K, Na, Sr, and Ba are representative of an arid climate [74, 75]. Most of
the analysed samples have C-values between 0.21-0.39, suggesting semiarid
conditions; the C-values for samples D1, D4, and D9 are in the range of 0.42—
0.52, indicating semiarid—humid conditions, while the value for sample D2
(0.17) implies an arid climate (Table 1) [74, 75].

The Rb/Sr ratio is used to estimate palacoclimate, since Rb precipitates
and is adsorbed by clay minerals under humid conditions, whereas Sr is
deposited with carbonates during dry periods [37, 76, 77]. Consequently, high
values of the ratio indicate humid conditions, while low values reflect arid
conditions. The majority of the samples have Rb/Sr ratios < 0.3, indicating
semiarid conditions, whereas samples D1, D4, and D9 exhibit somewhat
elevated values (0.34-0.53), reflecting semiarid—humid conditions, which is
in accordance with the above-discussed C-value (Table 1).

The Sr/Cu ratio is based on the observation that the concentration of Sr
increases under arid conditions, while the concentration of Cu rises under
humid conditions. Accordingly, an elevated Sr/Cu ratio indicates a dry and
warm climate [24, 78]. Most samples (D3, D5, D6, D10, D12, D14, D15) have
St/Cu ratio values between 5-10, suggesting warm semiarid to semihumid
conditions. Samples D1, D4, D7, D9, and D11 are characterised by a Sr/Cu
ratio <5, which indicates a warm and humid climate. However, in accordance
with the above-discussed C-value and the Rb/Sr ratio, samples D1, D4,
and D9 show the lowest Sr/Cu ratio values <2.6, reflecting the highest
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palacoenvironmental humidity within the studied sample set. On the other
hand, samples D2, D8, D13, and D16 exhibit St/Cu ratio values > 10, indicating
dry and hot conditions [41, 75, 79]. It should be noted that sample D16, which
clearly differs from the rest, also displays the most significant difference in
palaeoclimate proxy values (Rb/Sr = 0.04; St/Cu = 73.74; Table 1), implying
the most pronounced aridity within the studied set.

The climate indices C-value, Rb/Sr, and Sr/Cu show significant correlations
(r=0.91, p<0.01; r=-0.89, p<0.01; r =-0.85, p<0.01, respectively).
Conversely, moderate correlations of these parameters with TOC contents in
samples D1-D15 (r=-0.51, p=0.05; r =-0.55, p <0.05; r=0.67, p <0.01,
respectively) are observed. This may imply that increased humidity caused
a higher clastic influx, which contributed more to the decrease of OM
concentration than to the increase in palacobioproductivity (i.e. blooms of
aquatic organisms). It is also documented by highly similar correlation
coefficients (r = 0.5-0.7) between the climate proxies and TOC, as well as
the S2/S3 ratio (derived from Rock-Eval data discussed in [16]), reflecting
the relative input of aquatic vs terrestrial OM and thus the quality of OM to
produce hydrocarbons.

3.1.6.2 Salinity

Salinity in the water column is one of the key factors that control the growth
of organisms in lacustrine environments and the preservation of OM [80, 81].

The Sr/Ba ratio is commonly used to estimate palacosalinity because Sr
and Ba are sensitive to salinity variations and have different geochemical
behaviour [6, 82, 83]. Sr is deposited directly from seawater, while Ba is
easily adsorbed by clay minerals and fine clastic sediments [84, 85]. A high
Sr concentration can be an indication of the inflow of seawater into the lake;
therefore, the Sr/Ba ratio increases as water salinity rises. Most of the analysed
samples have Sr/Ba > 1, which implies saline water, whereas samples D1, D4,
D6, D7, and D9 have values <1, which suggests fresh water [86, 87].

The Ca/(Ca + Fe) ratio also shows sensitivity to salinity changes [88]. Most
samples have Ca/(Ca + Fe) ratio values ranging from 0.47 to 0.73, indicating
brackish water. The exceptions are samples D1, D4, D7, and D9, which have
values of this parameter <0.40, suggesting a freshwater environment, and sample
D16, which shows a value of 0.93, indicating saline water (Table 1) [72, 88].
This is in line with conclusions derived from biomarker proxies of the analysed
samples (pristane/phytane ratio, gammacerane index, and the abundance of
[-carotane), which indicate deposition of OM in a lacustrine alkaline brackish
to freshwater environment under warm climatic conditions [16].

A good agreement between OM richness and salinity is observed (TOC vs
St/Ba ratio: r=0.70, p <0.01; TOC vs Ca/(Ca + Fe) ratio: r = 0.60, p <0.05,
for samples D1-D15). Samples D2, D13, and D16, containing the highest TOC
contents, exhibit the greatest values of both palaeosalinity proxies, whereas
samples D1, D4, D6, and D7, with the lowest TOC contents (< 3%), were
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deposited under freshwater conditions (Table 1; table 1 in Part A). The most
organic-rich sample, D16, again displays a notable difference from D1-D15,
being characterised by evidently higher Sr/Ba and Ca/(Ca + Fe) ratios (4.68
and 0.93, respectively; Table 1), clearly indicating the influence of marine
water. This observation is consistent with results from previous research,
which also showed that during the deposition of sediments represented by
D16, there was a marine inflow from the Paratethys Sea as a result of regional
tilting of the area during the Lower Miocene [16].

Generally, salinity is controlled by climate, because the salinity of water
increases under warm and arid conditions as a result of evaporation [89, 90].
This is also reflected within the studied sample set, since statistically significant
correlations between the climate indices (C-value, Rb/Sr, Sr/Cu) and salinity
proxies (Sr/Ba and Ca/(Ca + Fe)) are observed (r ranging from 0.84 to 0.94).

3.1.6.3 Redox conditions

According to some authors, anoxic conditions are the main factor regulating
OM enrichment and fixation within sediments [80, 91]. Such settings are
controlled by climatic and hydrographic conditions and can develop within
stratified water columns due to salinity and/or temperature gradients [56].
TEs such as Cr, Ni, V, U, Th, Mo, Cu, and Co can be used as redox tracers
because their oxidation state and solubility are influenced by the redox status
of the palaeoenvironment [22, 56, 58, 92-94].

The analysed samples showed enrichment in Mo, U, V, Cu, Ni, and Zn
(section 3.3 in Part A). The enrichment of these elements is typical of deposits
formed under anoxic conditions and usually indicates that such conditions were
associated with high palaeobioproductivity [7, 95]. The parameters V/(V + Ni)
and V/Zn (Table 1) also indicate anoxic conditions in the depositional environ-
ment [62, 96, 97]. This agrees with conclusions drawn from biomarker proxies
presented in previous studies [16, 17], which are also considered reliable
indicators of redox conditions.

For more detailed monitoring, EFs for redox tracers [8, 56, 98] were
calculated for each sample individually (Table 1). Interestingly, in most cases,
the highest enrichment of these elements is found in samples D1, D4, and
D7, which exhibit the lowest TOC contents (Table 1; table 1 in Part A). In
contrast, the lowest EF values are observed for the most organic-rich sample,
D16. Therefore, the obtained data may indicate that the lower TOC contents
in samples D1, D4, and D7 were not caused by a change in anoxic redox
conditions but rather by the dilution of OM concentration due to clastic influx
(Section 3.1.5).

This interpretation is in accordance with biomarker redox proxies, which
clearly indicate a stable water column level (i.e. anoxic settings) during the
formation of samples D1-D15, as well as elevated values of the gammacerane
index, associated with a steadily low pristane/phytane ratio, particularly in
samples D1, D4, and D7 [16]. On the other hand, the lowest redox tracer EFs
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for sample D16 coincide with biomarker parameters implying a shallower
but stratified and more saline calm water column [16], as well as with
palacoclimate indices indicating arid and warm climatic conditions (Section
3.1.6.1).

3.2. Integrative implications for the formation of organic-rich sediments
in the Dubrava block

The characteristics of the lacustrine depositional environment affect the
formation of organic-rich sediments and kerogen type, and therefore their
potential to produce liquid hydrocarbons. These characteristics are recorded
in the geochemical features of sediments and can be obtained from analyses of
both organic and inorganic matter ([5, 60, 65, 99, 100] and references therein).

Both inorganic and organic data clearly show a notable difference in sample
D16 (Fig. 5a) and certain differences among samples D1-D15 (Fig. 5b).
Although D16 is the only sample of its type in the analysed series, it clearly
reflects the transition from a swamp environment to a lacustrine one, as well
as the geological evolution of the basin.

Sample D16 was formed just above the main coal seam, which indicates
significant changes in sedimentary conditions. The main factors that induced
this were probably tectonic activity and climate change, which have led to a
transgression [31]. Sample D16 is characterised by the highest proportion of
carbonate minerals (63.87 wt%; fig. 1 in Part A), the exclusive presence of
the carbonate mineral aragonite and the sulphate mineral bassanite [16], and
the absence of feldspar and zeolite group minerals (natrolite and analcime).
It also shows lower concentrations of almost all TEs and REEs.

Geochemical data indicate differences in provenance and tectonic settings
between sample D16 (more felsic) and samples D1-D15 (Sections 3.1.1 and
3.1.2), while D16 was not influenced by hydrothermal fluids (Section 3.1.3).
Sample D16 is also characterised by higher palaeobioproductivity (the highest
Ba/Al and Ba/Ti ratios; Section 3.1.4) and significantly lower detrital input
(the highest Si/Al ratio and the lowest concentrations of constituents of clastic
minerals and TEs; Section 3.1.5; sections 3.1.1 and 3.1.3 in Part A).

The salinity parameters (Sr/Ba, Ca/(Ca + Fe); Section 3.1.6.2) indicate
marine water inflow into the lake. As mentioned, sample D16 has the highest
content of carbonate minerals (fig. 1 in Part A), which are associated with
an arid climate and alkaline environment [101]. Moreover, the enrichment
in carbonate minerals also means that there was no substantial detrital or
terrestrial material influx into the lake, which led not only to OM enrichment
but also to the dilution of almost all TE and REE concentrations, except for
Cs, Sr, Cr, and Ni [23]. The Sr enrichment is attributed to marine transgression
and the formation of a large amount of the carbonate mineral aragonite [16].

Cr and Ni are redox-sensitive elements; hence, reducing conditions
favoured their enrichment in sediments [57]. The high concentration of Ni can
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Fig. 5. Sketch illustrating the depositional environments during oil shale formation of
(a) sample 16 and (b) samples D1-D15.

also originate from seawater inflow [102] and/or high OM flux [56], while a
notably increased content of S can explain the enrichment of Cs in this sample
only (6.11 wt%; table 1 in Part A) [103] and/or elevated water temperature
[104].

During the formation of sediments represented by sample D16, the climate
was warm and arid (Section 3.1.6.1; see also the presence of bassanite
and aragonite in section 3.1.1 in Part A). Such conditions enhanced water
evaporation, resulting in a lower water level, higher insolation, and weaker
circulation within the water body, consequently favouring stratification.
These conditions led to an anoxic environment at depth, which contributed to
better OM preservation. Combined with high palaecobioproductivity (mainly
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favourable for the growth of algae and sulphur-reducing bacteria) and a
low clastic input (minimising the dilution effect on OM concentration), this
resulted in the highest TOC content.

All the above observations derived from the study of inorganic components
are in accordance with the detailed characterisation of OM [16, 17]. The OM
study also implied a calm alkaline environment and pointed out sudden
ingressions of marine water into the basin. The water column was shallow but
stratified due to the somewhat increased salinity and elevated temperature.
Such conditions led to high palacobioproductivity, significant deposition, and
preservation of aquatic OM (mainly algae and bacterial remnants) [16, 17].

Additionally, it is well known (e.g. [105—107]) that the sudden mixing of a
thermally stratified freshwater column, caused by sporadic storms or marine
water ingressions, induces oxygen deprivation and/or salt stress. Such events
cause environmental shock and mass mortality of aquatic biota due to their
inability to adapt, thus promoting enhanced OM deposition at the sediment—
water interface and the local formation of organic-rich layers. Consequently,
any of the phenomena explained above can lead to the formation of sediments
extremely rich in OM (TOC 29.10 wt%; table 1 in Part A), consisting of a
mixture of oil-prone kerogen types [ and II [16, 17].

After the deposition of sediments represented by sample D16, the lake
deepened over time, probably due to further tectonic activity (Section 3.1.2)
and climate change (still warm, but more humid climate; Section 3.1.6.1).
Due to the semiarid/semihumid to humid climate, freshwater inflow into
the lake occurred, leading to a rise in water level (brackish—fresh lake) that
is usually accompanied by a higher terrigenous influx of clastic material.
The clastic influx carried nutrients into the lake, causing blooms of aquatic
organisms (mainly primary producers, such as green and brown algae,
and bacteria) and increasing the sedimentation rate. Generally, a faster
sedimentation rate contributes to better OM preservation but also leads to its
reduced concentration due to dilution by clastic material [108]. Furthermore,
the freshwater inflow into the lake resulted in a very low S content in samples
D1-D15 (0.06-0.23 wt%; table 1 in Part A), compared with D16 (6.11 wt%).

As the lake is a dynamic system, during the formation of sedimentary rocks
represented by samples D1-D15, there were fluctuations in bioproductivity,
water column level, and stratification, which were consequence of changes
in humidity, freshwater inflow, and hydrothermal and clastic influx. All these
factors resulted in geochemical variations among samples D1-D15, grouping
them into two subclusters. One subcluster (Ib) comprises samples D1, D4, D6,
D7, and D9, whereas the second (Ia) includes the remaining samples, among
which a slight distinction between samples D2 and D13 is observed, with
more pronounced clustering of D13 (section 3.1.3 in Part A).

The samples of subcluster Ib are characterised by the lowest TOC contents
(table 1 in Part A), a high content of clay minerals, a relatively high content
of feldspar minerals, absence or very low content of quartz, the lowest
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amount of carbonate minerals (section 3.1.1 in Part A), high concentrations
of REEs (section 3.1.4 in Part A), the highest humidity / the lowest salinity
(Sections 3.1.6.1 and 3.1.6.2), and high clastic input (Section 3.1.5). This
particularly applies to samples D4, D6, and D7, which show the highest
influx of clastic terrigenous material, as indicated by the REE distributions
(Section 3.1.1), kerogen type, and biomarkers [16]. The V/(V +Ni) and
V/Zn ratios, EFs for redox tracers, and biomarker proxies (gammacerane
index and pristane/phytane ratio; [16]) clearly imply anoxic redox conditions.
Therefore, the lowering of TOC content in the samples of subcluster Ib
can mostly be attributed to a decrease of OM concentration due to clastic
influx (Section 3.1.5), rather than to a change in anoxic redox conditions.
Furthermore, this also signifies that the reduced OM potential for liquid
hydrocarbon generation in samples D4, D6, and D7 (i.e. the presence of
type III kerogen; [16]) was mainly controlled by the clastic influx that resulted
in an increased impact of allochthonous higher-plant biomass.

The samples from subcluster Ia are characterised by a substantial content
of OM (with high hydrocarbon generation potential, i.e. kerogen types I
and II), resulting from high palacobioproductivity, further supported by
hydrothermal fluids (as documented by the presence of analcime and natrolite
and corresponding parameters; Section 3.1.3) and anoxic redox conditions
(Section 3.1.6.3). A moderate clastic influx is observed. Both inorganic data
and biomarker proxies suggest a relatively high and stable brackish water
column, the stratification of which was supported by a warm semiarid/
semihumid climate.

Sample D13 differs from the other samples of subcluster la by a relatively
higher TOC content (~13 wt%; table 1 in Part A), a higher content of carbonate
minerals and quartz, a lower amount of feldspar and clay minerals, lower
REE content, and a lower clastic input (Section 3.1.5; sections 3.1.1-3.1.3
in Part A). Among numerous parameters, the most evident distinguishing
feature of sample D13 is its more pronounced aridity (Sections 3.1.6.1 and
3.1.6.2), which may have caused a lower clastic influx (similar to the case of
sample D16), resulting in less OM dilution and a slight increase in alkalinity/
salinity. This calm, alkaline, arid environment was favourable for the
deposition of carbonates, but also for the blooming of aquatic biota (increased
nutrient concentration due to evaporation), as documented by the highest
palaeobioproductivity index values (Section 3.1.4). Furthermore, the calm
environment and warm conditions promoted water stratification and anoxic
settings, contributing to good algal OM preservation. The obtained results
are in accordance with OM proxies, which indicate the highest hydrocarbon
generation potential and enrichment in precursor algal biomass in sample D13
(type I kerogen; [15-17]).

Finally, the slight separation of sample D2 (fig. 2 in Part A) can also be
attributed to enhanced aridity and palacobioproductivity. This sample showed
almost equal values of Y REEs (section 3.1.4 in Part A) and climate and
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salinity proxies as sample D13 (Sections 3.1.6.1 and 3.1.6.2). In addition,
it is associated with the highest carbonate content (section 3.1.1 in Part A)
and palaeobioproductivity parameters (Section 3.1.4), as well as the lowest
content of MCEs and TCEs after sample D13 (Section 3.1.5), among the
samples comprising subcluster Ia.

It should be noted that the classification of samples based on mineral
composition and concentrations of major, trace, and rare earth elements, in
addition to full accordance with Rock-Eval data and biomarker proxies, and
a clear indication of the main factors causing differences in organic richness,
also revealed thorough consistency with lithology (Table 1; fig. 2 in Part A).

4. Conclusions

A detailed inorganic geochemical characterisation of the Upper layer of
Aleksinac oil shale in the Dubrava block was performed.

An andesite to felsic origin is presumed for the studied samples, with evident
volcanic activity, also documented by the presence of zeolite group minerals
(analcime and natrolite). Accordingly, sediment formation was influenced by
hydrothermal fluids, which promoted the productivity of aquatic organisms
and thus led to OM enrichment. The sediments developed in terrain with
active continental margin characteristics and were built on a continental island
arc, consistent with the complex tectonic settings of the Aleksinac deposit and
its formation through fragmentation of two geotectonic units, the Carpatho-
Balkanides and the Serbian—-Macedonian Massif.

Palacoenvironmental indicators derived from concentrations of major,
trace, and rare earth elements showed good accordance with organic geo-
chemical data from previous detailed studies, indicating deposition of the
sediments in an anoxic lacustrine environment of variable salinity (from saline
to freshwater) under warm, arid, and semiarid/semihumid climatic conditions.
Such conditions favoured primary bioproductivity in the lake, whereas a
stably stratified water column, with highly reducing bottom water, enhanced
OM preservation.

Classification of the samples based on mineral composition and
concentrations of major, trace, and rare earth elements resulted in two main
clusters (I and II), showing a distinct separation of two subclusters within
the first group. This classification revealed good accordance with Rock-Eval
data, biomarker proxies, and lithology, clearly indicating the main factors that
caused differences in organic richness.

Samples D1-D15, forming the first cluster, are characterised by variable
contents of clays, feldspars, quartz, carbonates, TOC (~1-13 wt%), and S
(0.06 0.23 wt%), as well as concentrations of trace and rare earth elements.
Within this group, samples D1, D4, D6, D7, and D9, comprising subcluster
Ib, clearly stand out from the remaining samples (subcluster la), based on the
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increased contents of all clastic constituents and rare earth elements, absence
or very low content of quartz, the lowest amount of carbonate minerals, and
the lowest TOC contents (~1-3 wt%).

The second cluster comprises sample D16, which notably differs from
all other samples (D1-D15) and is the first sample deposited after the main
coal seam. It is characterised by the highest content of carbonate minerals
(63.87 wt%), OM (TOC 29.10 wt%), and S (6.11 wt%), the exclusive presence
of the carbonate mineral aragonite and the sulphate mineral bassanite, the
absence of feldspar and zeolite group minerals, and lower concentrations
of almost all trace and rare earth elements (except Cs, Sr, Cr, and Ni).
The greatest OM-enrichment in sample D16 resulted mainly from the warm
and arid climate, and marine water ingressions, which created favourable
conditions for primary producers, whereas the calm, alkaline, stratified anoxic
water column contributed to excellent preservation of aquatic OM. Warm and
arid conditions also minimised clastic input.

The main change in the depositional environment of the sediments
represented by samples D1-D15 in relation to sample D16 occurred due to
tectonic activity and climate change. A more humid (semiarid/semihumid, but
still warm) climate, together with freshwater inflow into the lake, raised the
water level (brackish—fresh lake, low S content), while maintaining the anoxic
settings that promoted OM preservation, but also increasing the influx of
clastic terrigenous material. Detailed analysis of palacoenvironmental proxies,
which showed accordance with biomarker parameters, clearly revealed that
the lowering of TOC and the segregation of samples D1, D4, D6, D7, and D9
into a separate subcluster resulted from humid episodes that promoted clastic
influx, rather than from changes in anoxic redox conditions. Furthermore, the
lowering of OM potential for liquid hydrocarbon generation in samples D4,
D6, and D7 (i.e. the presence of type III kerogen) was also mainly controlled
by the clastic influx that resulted in the increased impact of allochthonous
higher-plant biomass.

The obtained results represent valuable palacoenvironmental records for
the study area and can contribute to future exploration and utilisation of oil
shale in the Aleksinac deposit.
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Abstract. Oil shales from Attarat and Sultani were pyrolyzed at 550 °C to
produce shale oils for the present study. The organic sulfur content of the two
shale oils was determined to be 9.3 and 10.5 wt.%, respectively. Two ionic
liquids (IL), 1-ethyl-3-methylimidazolium chloride ([EMIM]CI) and 1-butyl-
3-methylimidazolium thiocyanate ([BMIM]SCN), were used in liquid—liquid
extraction for desulfurization. The extraction process was carried out at room
temperature. The liquid—liquid extraction resulted in two-phase formation
and redistribution of sulfur compounds into the aqueous IL-rich phase and
the shale oil phase. The hydrocarbon sulfur weight percent was determined
using a CHNSO analyzer. The removal efficiency for Sultani and Attarat shale
oils with [EMIM]CI was calculated to be 52.4 and 58.1 wt.%, respectively.
When [BMIM]SCN was employed for the extraction of sulfur compounds from
Sultani and Attarat shale oils, removal efficiencies of 43.8 and 52.4 wt.% were
achieved, respectively. When the surfactant T-80 was added to Sultani shale
oil and heated to 60 °C, followed by addition of [EMIM]CI, the extraction
efficiency decreased to 40.9 wt.%. On the other hand, when the mixture of
shale oil and IL was heated to 60 °C before adding T-80, the weight percent
removal increased to 58.1%.

Keywords: shale oil, ionic liquid, desulfurization, Attarat, IL/oil ratio.

1. Introduction

In general, sulfur species in crude oils/fuels are a major issue during refining
and cause air pollution, which ultimately endangers public health. Particulate
emissions, processing equipment, corrosion of equipment, catalyst poisoning/
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deactivation, transportation, and storage of fuels are affected by the presence
of sulfur compounds in their different forms. Hydrodesulfurization (HDS) is
the conventional method of sulfur removal from crude oils or distilled frac-
tions [1]. Alternative methods to HDS have been developed, such as oxidation.
In oxidative desulfurization, the sulfur compounds in fuel are oxidized to
sulfoxides in a slow reaction step, then to sulfones in a fast reaction step,
which are then removed through liquid extraction [2, 3], precipitation and
adsorption [4], extraction [5], and alkylation, in which the boiling point of the
organosulfur compounds is increased by alkylation of thiophene with olefins,
thus increasing the molecular weight to allow separation by distillation [6].

Kerogen is the organic-bearing material in oil shale composition that is
also known to generate organometallic compounds [7]. Shale oil includes
the known classes of hydrocarbons, as well as heteroatoms such as sulfur,
nitrogen, and oxygen, in addition to metals [8—11]. The sulfur content of
Jordanian shale oil can be as high as 9.0-12.0 wt.% [12]. Baird et al. [13]
and Jarvik et al. [14] studied the shale oil sulfur content generated from
kukersite oil shale and reported sulfur content in the range of 0.4—1.2 wt.%.
These authors compiled and summarized works of several researchers who
employed standard hydrotreating and more advanced methods to remove
sulfur, nitrogen, and oxygen organometallic compounds from shale oil. On
the other hand, Rang et al. [ 15] discussed non-hydrodesulfurization processes,
including extraction, oxidation, and adsorption, as advanced methods used to
deeply desulfurize liquid fuels, reducing sulfur content to less than 50 ppm.

The sulfur content of Chinese shale oil was reported as high as 2.19 wt.%
[16]. Brazilian shale oil from the Irati location contained as low as 1.0 wt.%
sulfur [17]. Sulfur in shale oil is present in different forms, such as mercaptans,
thiophenes, their derivatives, and also sulfides or disulfides in the lighter
fractions of shale oil.

One of the recent advanced methods to remove sulfur from fuels/shale oils
is the use of ionic liquids (IL). Some of these ILs have the ability to perform
liquid-liquid desulfurization LLD) and oxidative desulfurization, removing
the most recalcitrant compounds present in fuels/shale oils. Compounds such
as thiophene, benzothiophene, dibenzothiophene, and smaller molecular
weight sulfur compounds can leave the oil phase and migrate to the aqueous
phase containing ILs [18]. Researchers have reported that the migration of
sulfur compounds is achieved through the formation of hydrogen bonding and
dipole—dipole interactions, in addition to n—r stacking interactions between the
sulfur compounds in fuels and ILs [19]. ILs in the aqueous phase containing
the extracted sulfur compounds can be regenerated and recycled, improving
the economics of LLD [20].

The role of ILs in removing sulfur compounds from crude oils and/or
fractions such as gasoline, kerosene, diesel, and others has been attracting
attention for decades. The ease of availability of these solvents to remove
sulfur compounds and aromatics has made them popular among researchers.
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ILs such as 1-butyl-3-methylimidazolium thiocyanate ([BMIM]SCN) were
used to extract dibenzothiophene and aromatics from base oil, in which
certain amounts of naphthalene and dibenzothiophene were dissolved [21].
The extractions results showed that 92.0 wt.% of the dibenzothiophene was
removed under the experimental optimum extraction conditions, such as
temperature and IL/oil ratio. In extractive desulfurization [22], the removal
efficiency of dibenzothiophene from n-dodecane model oil was 86.5%
at 30 °C, with an IL/oil mass ratio of 1:1 after 30 min. An IL, 1-ethyl-3-
methylimidazolium chloride ([EMIM]CI), was used as an extractant with a
model oil (dodecane) containing dibenzothiophene as the sulfur compound
[23]. The extraction of the model sulfur compound dibenzothiophene was
reported to be 99 wt.%. The researchers also conducted regeneration of the
spent IL via toluene back-extraction.

Using ILs in shale oil LLD has not been investigated thoroughly yet.
In some cases, the weight percent of sulfur present in shale oil is much
higher than that of crude oils or distilled fractions such as gasoline, kerosine,
diesel, and fuel oils. Due to the higher sulfur mass percent in shale oils, it
is difficult to refine shale oils in ordinary refineries. The shale oil content
of heteroatoms/organometallic compounds must be reduced, or the shale oil
must be hydrotreated to reduce the share of these compounds to permissible
limits for possible distillation in crude oil refineries.

In general, few experimental tests have been performed by mixing
ILs with real shale oil to extract sulfur/nitrogen compounds. ILs such as
[BMIM]SCN, in addition to others, have been tested for extracting basic and
neutral nitrides from Fushun shale oil in China [24]. Recently, in a separate
study, ILs, i.e., [EMIM]CI and [BMIM]SCN, were used to extract sulfur
compounds from shale oil generated by pyrolyzing Jordanian Attarat shale
0il [25]. The objective of the present work is the extraction of sulfur compounds
present in real shale oil obtained by pyrolyzing oil shale at 550 °C from two
different locations, Attarat and Sultani. The generated shale oils were tested
for sulfur extraction using two ILs.

2. Materials and methods

2.1. Oil shale pyrolysis

The targeted locations were the Attarat Um-Alghudran area (31°16'08” N
36°26'52" E) and the Sultani mine in the Al-Hissa location (30.7705° N
35.8761° E). Oil shale samples were crushed and sieved to the desired size,
8 mm, using the British Standard Sieves system. This section of experimental
work was initiated by destructive distillation (pyrolysis) of shale oil under
inert nitrogen conditions, at temperature up to 550 °C. For each oil shale
sample, a mass of 400 g was placed in the retort and pyrolyzed at 550 °C until
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no more shale oil was condensed. This part of the work generated the shale oil
required for IL extraction experiments.

The produced shale oil was separated from the retorted water using a
separatory funnel. The bottom water layer was taken and discarded, while the
top shale oil layer was used for the liquid—liquid extraction experiments.

2.2. Liquid-liquid extraction of shale oil

The second part of the experiment was the extraction of sulfur compounds with
[EMIM]CI (purchased from Thermo Fisher Scientific, catalog No. 354091000,
CAS No. 79917-90-1, HPLC >98%, water <1.0, molecular weight = 174.67,
solid) and [BMIM]SCN (purchased from Thermo Fisher Scientific, catalog
No. H59493.06, CAS No. 331717-63-6, proton NMR 97.5% min., water
<0.26%, molecular weight = 169.25, pale yellow liquid). The extraction of
sulfur compounds from shale oil using ILs was also employed at two levels:
the stand-alone level and pretreatment of shale oil with a surfactant (Tween-80,
nonionic, polyoxyethylene surfactant, Thermo Fisher Scientific, catalog
No. 28329, light yellow liquid, concentration 10.3%, pH = 7.59, detergent
grade). The treatment steps resulted in two separate phases: a shale oil phase
and an aqueous phase containing the ILs and extracted sulf ur compounds.

Both phases were subjected to total sulfur determination. In the present
work, only the mass of sulfur in the two phases was of interest, since these
represent the total sulfur content of the shale oil.

One gram of shale oil was weighed and mixed with one gram of ILs,
resulting in an IL/oil ratio of 1:1. The mixing process was conducted at
room temperature; this part of the experiment was performed for both shale
oil samples and both types of ILs used. To study the effect of heating, two
procedures were applied: heating a mixture of IL and shale oil prior to the
addition of surfactant, and heating a mixture of shale oil and surfactant
before the addition of ILs. Heating was performed at 60 °C using a water
bath. The heated mixture was allowed to cool and separate into two phases.
The removed total sulfur was determined using a Euro Vector 3000 CHNSO
elemental analyzer.

2.3. Surfactant heating treatment

In this section of the experiment, the effect of mixture heating was investigated.
The surfactant was added to the shale oil and IL mixture at less than 0.1 wt.%
to avoid emulsion formation. Two types of treatment were tested in this part
of the work. In the first trial, the surfactant was added to the mixture before
heating in a water bath, i.e., at room temperature, followed by mixing and
phase separation. In the second trial, the mixture of shale oil/surfactant and
shale oil/IL was placed in the water bath for 3 h at 60 °C before the addition of
IL or surfactant, respectively, to induce phase separation. These experiments
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were conducted in conjunction with distilled water for dilution of additives
and facilitation of extract and raffinate separation. This step was performed to
investigate the influence of surfactants on the viscosity of shale oil and their
role in reducing surface tension during the extraction of sulfur from shale oil
in the presence of ILs.

3. Results and discussion

The mass balance of Attarat and Sultani oil shale pyrolysis runs indicated that
more than 10% of the oil shale samples by weight were converted to shale oil.
Experimental runs were conducted in a stainless steel retort. The produced
shale oil was used for sulfur determination before and after IL treatment.
The test results showed that the total sulfur in Attarat and Sultani oil shales
was 9.3 and 10.5 wt.%, respectively. A single GC—MS analysis run of a shale
oil sample from Attarat showed the presence of several sulfur compounds,
including, thiophene, 2,5-dimethylthiophene, 3,4-dimethylthiophene,
2,3-dimethylthiophene,  2,3,4-trimethylthiophene,  3,4-diethylthiophene,
2,5-diethylthiophene, benzothiophenes, 2-methylbenzothiophene, and other
thiophene derivatives.

Liquid-liquid extraction with ILs allowed the arbitrary redistribution of
sulfur compounds from shale oil into two phases. One phase was IL-rich,
containing the extracted sulfur compounds, and the other was shale oil-rich.
Sulfur content determination was performed for both phases. The efficiency
of the extraction process was calculated based on the original sulfur weight
measured in the shale oil before liquid—liquid extraction. The weight of sulfur
in each phase, i.e., the IL-rich phase (aqueous phase) and the shale oil-rich
phase, were determined for efficiency calculations.

3.1. Sultani shale oil

The results of sulfur compound extraction using [BMIM]SCN and [EMIM]CI
are depicted in Figure 1. Figure 1 shows three results: the sulfur content of
the freshly produced shale oil, shown by the column on the left graph under
the title “Shale oil,” is 10.5 wt.%. The weight percent sulfur found in the
[BMIM]SCN aqueous extract (AQL) is depicted in the middle column of the
upper graph as 4.6 wt.%. The right-hand column indicates the weight percent
sulfur remaining in the shale oil phase after extraction, measured as 6.1 wt.%.
The lower graph depicts similar results using [EMIM]CI. As shown, the use of
[EMIM]Cl resulted in 5.5 wt.% sulfur. The efficiency of the extraction process
was calculated to be 43.8% and 52.4% using [BMIM]SCN and [EMIM]CI,
respectively. As can be seen, [EMIM]CI is a better extraction agent for sulfur
compounds than [BMIM]SCN. It should be noted that the sulfur content of
the [BMIM]SCN IL was not deducted from the total sulfur measured in the
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Fig. 1. Sulfur wt.% distribution in [BMIM]SCN aqueous extract (AQL) and shale oil
(SO) layer.

[BMIM]SCN AQL, which may lead to an increase in removal efficiency.
The unextracted sulfur remained at 6.1 and 5.2 wt.% in the shale oil layer after
extraction with [BMIM]SCN and [EMIM]CI, respectively.

3.2. Attarat shale oil

One gram of shale oil was weighed and mixed with one gram of IL to give
a ratio of 1:1. The mixing process was conducted at room temperature.
The formed mixture was mixed thoroughly. This part of the experiment was
performed for both shale oil samples and both ILs used. The mixture was
allowed 10—15 min to separate into two phases. The results of sulfur extraction
from the original shale oil and the layers formed after extraction are depicted
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in Figure 2. The upper graph represents extraction with [BMIM]SCN, and the
lower graph corresponds to [EMIM]CI results.

The results depicted in Figure 2 show that the extracted sulfur wt.% in
the [BMIM]SCN AQL was 4.9 wt.% (left graph), whereas the aqueous
layer formed with [EMIM]CI resulted in 5.4 wt.% sulfur extraction (right
graph). These values indicate that 52.3 and 58.1 wt.% removal efficiency
were achieved by the [BMIM]SCN and [EMIM]CI ILs, respectively. These
calculated efficiencies are higher than the corresponding removal efficiencies
calculated for Sultani shale oil. These differences could be attributed to the
nature of the sulfur components present in the shale oils. It should also be
noted that the sulfur content of the [BMIM]SCN was not accounted for during
sulfur weight percent calculations due to the nature of CHNSO analysis.
The sulfur remaining in the shale oil-rich phase (SO layer), as shown in the
rightmost column in Figure 2, was 4.6 and 4.3 wt.% for [BMIM]SCN and
[EMIM]CI, respectively.

Attarat shale oil
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S g
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10 93
§ 8
E
éﬁ 6 54
= 43
A4
2
0
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Fig. 2. Sulfur wt.% distribution after treatment with [BMIM]SCN and [EMIM]CI.
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3.3. Surfactants and heating roles

After discussing the findings of mixing ILs with shale oils, the effect of
adding surfactants such as Tween-80 (T-80) was investigated. The importance
of the surfactant lies in its impact on surface tension forces [26]. Shale oil is
more viscous than normal crude oils; unfortunately, no reliable experimental
data on viscosity measurements are reported in the literature, and it was not
possible to measure viscosity in the present work.

The effect of surfactant addition to Sultani shale oil in the presence of
different ILs is depicted by comparing Figures 1 and 3. As can be calculated
from both figures, the addition of T-80 in the presence of [BMIM]SCN as an
extraction agent increased the removal weight percent from 4.6 wt.% (Fig. 1)

Sultani shale oil
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Fig. 3. Sulfur content in AQL and SO layers after adding surfactant T-80 to shale oil
and ILs mixture.
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to 4.8 wt.% (Fig. 3), i.e., a 4.3% increase in removal efficiency. Similarly,
when the surfactant aided the extraction process in the case of [EMIM]CI, the
weight percent of sulfur removal decreased from 5.5 wt.% (Fig. 1) to 4.3 wt.%
(Fig. 3), i.e., a 21.8% decrease. This indicates interactions between shale oil,
the type of IL, and T-80 during the extraction process. Further investigations
are required to explain the nature and type of these interactions.

The interactions of adding T-80 to shale oil and to the shale oil-IL mixture
is presented in Figure 4. The T-80 effect was investigated in two cases: in the
first case, T-80 was added to shale oil, followed by heating at 60 °C for 2.5 h
in a water bath before adding the IL; in the second case, IL was added to shale
oil, heated at 60 °C in a water bath for 2.5 h before adding T-80. The first
case represents the interactions of T-80 with shale oil alone at 60 °C before
IL intervention, while the second case represents the interactions of IL with
shale oil at 60 °C before the addition of T-80. It should be noted here that
there is a combined effect of heating and extraction at higher temperature
compared with room-temperature extraction. Further investigations into these
interactions are recommended.

The effect of [EMIM]CI and T-80 was tested in the present work. As shown
in Figure 4, heating shale oil with T-80 at 60 °C before adding [EMIM]CI
to the mixture resulted in 4.3 wt.% out of 10.5 wt.% from the original shale
oil (AQL phase), i.e., 40.9% extraction efficiency compared with 5.5 wt.%
extraction before heating and without the addition of T-80. This amounts to
a reduction of 11.48% in removal efficiency. This behavior is likely due to
T-80 being a nonionic surfactant with strong emulsifying and wetting ability.
Unfortunately, we cannot ascribe this result to either the effect of temperature or
surfactant addition. Similar studies [27] on crude oil and different ILs showed
a decrease in extraction efficiency, when the temperature increased from room
temperature to 60 °C, from 21% to 15%. These findings clearly support the
possibility of decreased extraction efficiency due to increased temperature.
This observation is in agreement with the findings of Mohammed et al. [27].

On the other hand, when shale oil and IL were mixed and heated, followed
by the addition of T-80, the sulfur removed was 6.1 wt.%, corresponding to
58.1% removal efficiency. This must be compared with the results without
heating and without the addition of T-80, in which 5.5 wt.% of sulfur was
removed from 10.5 wt.% shale oil, indicating a removal efficiency of
52.38%, i.e., a 5.7% decrease. However, the change in removal efficiency
results from the combination of heating, surfactant addition, and extraction
at higher temperature. More work is needed to isolate the individual effects
of temperature increase and surfactant addition on sulfur removal efficiency.
Accordingly, no clear effect can be deduced in this study.

The interaction of surfactants (T-80) indicates direct interactions between
IL and sulfur-containing hydrocarbons of shale oil under the influence of
temperature. The decrease in extraction percentage in the presence of T-80
could be due to interactions between the IL and the surfactant and/or the effect
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Fig. 4. Effect of heating on sulfur content in AQL with T-80 and mixture of shale oil
and ILs.

of'increased extraction temperature. Extraction with [EMIM]Cl in the presence
of T-80 shows a decrease of sulfur in the AQL phase from 5.5 to 4.3 wt.%,
i.e., a 21.8% reduction. This result could be ascribed to interactions between
T-80 and [EMIM]CI at higher temperatures than room temperature. T-80 can
hydrogen-bond to CI” or coordinate to EMIM", leading to breaking ion—ion
contacts and loosening the ionic network, which lowers viscosity [24] and
can improve extraction mechanism and process efficiency, while temperature
has the opposite effect [27]. Gao et al. [24] reported that denitrogenation of
shale oil decreased with temperatures above 50 °C. This result aligns with
the present findings. More work is needed on the effect of temperature on the
extraction efficiency, equilibrium values, and the recyclability of ILs.
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4. Conclusions

The extraction of sulfur compounds from shale oil is feasible using the two
tested ionic liquids. 1-ethyl-3-methylimidazolium chloride ([EMIM]CI)
and 1-butyl-3-methylimidazolium thiocyanate ([BMIM]SCN) were found
to be effective in sulfur removal. The extraction ability of [BMIM]SCN is
less pronounced than that of [EMIM]CI. More than 50% removal efficiency
can be achieved. Extraction temperature plays a significant role in the
extraction process. The Tween-80 surfactant contributes to the extraction,
but a thorough investigation is required to understand the mechanism and the
different interactions between sulfur components in shale oil, ionic liquids,
and surfactants such as Triton-X100. Further research will focus on using
other ionic liquids under different operation conditions and evaluating the
recyclability of the ionic liquids for extraction.
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