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The bacterial sensor has been constructed, characterised and used for
biochemical oxygen demand (BOD) measurements in phenolic wastewafters.

The sensor has been found to be usable as a monitoring device and as a

control device in biological treatment systems.

Introduction

Biochemical oxygen demand (BOD) is one of the most generalizing
parameters that is used for characterization of the level of contamination

of wastewaters. BOD is also of a very important value for controlling
optimal input-regime in biological treatment plants. Classical method for

BOD measurement takes at least five days, or even 21 days if necessary.

Controlling biological systems like biological treatment plants needs

continuous information about the quality of incoming and outgoing water

and an immediate reaction to appearing differences from the optimal. It

is quite obvious that the classical BOD measuring method does not satisfy
our demand for information.

One of the most promising ways to get adequate information for time

short enough is using specific biosensors. Biosensor is an integrated
device which is capable of detecting analyte concentration by using a

biological recognition element. Biosensor can be divided into two parts: a

biological system and a detecting system that transforms a biochemical

signal into a visually observable electrical signal. Electrochemical sensors

constructed by coupling intact microbial cells with electrochemical

devices offer many unique possibilities for analytical measurements, as
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shown by Riedel et al. [l], Karube and Suzuki [2] and Rechnitz and

Ho [3]. As phenolic wastewaters are produced in a number of oil-shale

processing stages, the evaluation of water quality needs devices which are

easy to operate, relatively cheap, and provide fast and continuous

measurement.

The amperometric biosensor based on the oxygen decrease measuring
principle consists of two parts: an oxygen sensor and a bacteria-agarose
membrane.

Substrate reaches the bacterial layer when the sensitive top of the

sensor is immersed in the test medium. Bacterial cells produce enzymes

which can catalyse the degradation of biological matter (substrate). The

metabolites of this degradation are directed into the Krebbs cycle. It

means that substrate is metabolized in the bacterial layer by consuming
oxygen. The remaining oxygen is reduced at the cathode surface of the

oxygen Sensor.

The aim of the present research was to construct and characterize a

microbial sensor that could be used for the biochemical oxygen demand

measurement, first of all, in phenolic wastewaters of oil-shale industry. In

the experiment a specially designed oxygen sensor of the Clark type and

bacteria Bacillus subtilis immobilized in agarose gel film were used. In

those cases the activity of the bacteria persisted at least 4 months without

a requirement for additional calibrations.

Construction of Oxygen Sensor +

The oxygen sensor that was used in the experiment had to meet some

specific requirements. Firstly, the sensitive region of the sensor had to be

placed at the top of the sensor as it gives additional opportunities to

attach polymeric films with immobilized bacteria. It also gives a

possibility of using films with different fixed values of thickness. This is of

great advantage for studying diffusion processes in polymeric film with

immobilized bacteria.

Recently a theoretical model for microbial sensors has been developed
by our group [4]. In this model effective parameters are used which

makes it possible to introduce the concentrational distribution of oxygen

and substrate as a continuous curve. The distribution of oxygen within
the biosensor under steady-state conditions is illustrated in Fig. 1. The

effective oxygen concentration with respect to x; is linear in the

diffusional layers of the oxygen sensor and nonlinear in the bacteria-

agarose membrane due to oxygen consumption in the biochemical
reactions of the immobilized bacteria.

A short response time is another requirement for the oxygen sensor to

be applicable as a biosensor’s base-electrode. If this requirement is not
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met, it has to be taken

into account when

studying the stabiliza-

tion of the biosensor’s

signal. For this purpo-

se a body cell consi-

dering these require-
ments has been desig-
ned.

To reduce the res-

ponse time of the

oxygen Sensor a speci-
ally designed two-

electrode Clark-type
sensor for the deter-

mination of oxygen

uptake and a thin

membrane (25 pm)
were used. Plexiglass
was applied as a suit-

able material for the

oxygen sensor’s body.
1 M solution of KCI

was internal electro-

lyte. Silver wire with anodically formed AgCl layer served as a reference

anode. The working electrode was prepared by thermal decomposition of

a solution containing hexachloroplatinic acid. A glass substrate was dip-
coated in a solution followed by firing. Five repetitive cycles were enough
to prepare a continuous and well-adhesive Pt layer. The sensor’s cathode

was polarized at -0.7 V with respect to the internal Ag/AgCl electrode.

Characterization of the Bacteria Used

Bacillus subtilis is an aerobic, grampositive, sporulative bacterium with the

crosscut diameter of ca 0.6-0.7 um. Bacillus subtilis is a bacterium-

anthagonist as it suppresses the growth of other microorganisms. Its

spores are especially tolerant to thermal impact. Some spores can survive

even boiling for a relatively long period (10 min).
Bacillus subtilis is a strongly thermophilic bacterium with a growth

optimum of 37-50 °C and maximum ca 60 °C [s]. It can use most of

hexoses (glucose, mannose, fructose etc.), natural disaccharides, biogenic
organic acids (citrate, succinate, acetate etc.), water soluble primary
alcohols and biogenic aminoacids as sources of carbon [6]. During its life

Fig. 1. The distribution of oxygen within the

amperometric microbial sensor under steady-state
conditions. ¢, - effective concentration of oxygen,

I, - thickness of the diffusional layer (n), P, -

permeability of the diffusional layer to oxygen; “e”

- platinum cathode, “i” - electrolyte layer, “m” -

teflon . membrane, = “b6 - bacteria * agarose

membrane, “0” - test medium
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activity Bacillus produces exocellular enzymes (amylases, proteases) that

make its growth possible also on natural polymers like starch, proteins
and lipids. It is able to decompose gelatine and peptonize milk proteins
as well [s].

Metabolism of Bacillus subtilis is respirative, but the Bacillus can also

develop under unaerobic conditions as a facultative anaerobe for the final

electron acceptor in the bacteria’s respirative metabolism involving
molecular oxygen can be replaced by nitrate. Under anaerobic conditions

Bacillus reduces nitrate to nitrite.

Bacillus subtilis is capable of growing in a relatively wide range of

pH - ca 5.5-8.5.

Experimental and Results

The aim of the first part of the experiment was to characterize the oxygen

sensor. Response time is one of the limiting parameters for the oxygen

sensor. For this purpose the sensitive top of the sensor was attached air

tightly into a special pass-flow cell through which argon was run. When

the signal had stabilized, the air flow containing ca 20 %of oxygen was

led through the cell. Change of the signal and a period of time for its

stabilization was observed. The sensor signal was recorded as a voltage
difference. The response time of the oxygen sensor after a sudden change
in O, concentration was ca 20 sec.

To inspect the reproducibility at different O, concentrations, the

oxygen sensor was calibrated by using gas mixtures with certain oxygen

concentrations (Fig. 2).
Dependence of the output signal on temperature was studied as well.

An entrapment technique was used for bacteria immobilization in

agarose gel. The prewashed
bacterial mass was suspended in

3 ml of phosphate-buffered solu-

tion, added to 10 ml of agarose

solution in phosphate buffer

(0.3 g agarose in 10 ml of buffer

solution) and then altogether cast

onto a polymeric net of certain

thickness. The net was placed
between two glass plates till the

end of gelatization to achieve a

constant thickness of gel mem-

brane. The net with the immo-

bilized bacteria was placed at

room temperature in the buffer
Fig. 2. Signal - O, concentration depen-
dence of oxygen sensor
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solution. Then a circle with a certain diameter was cut out and attached

to the top of the oxygen sensor. :
Experiments were carried out in the measurement cell of 150 ml

volume at 25°C. Air-saturated water was used as measurement

environment. To eliminate the temperature dependence of the signal the

cell was thermostated. A magnetic stirrer was used for stirring the test

solution (Fig. 3).
Preliminary =measurements

were carried out with BOD

standard solution (BOD =

=2OO mg/l1) which contained

150 mg of glucose and 150 mg

of glutamic acid in 1liter of

water [7]. Stabilisation of the

signal took approximately 15-

30 minutes. From these

measurements the calibration

graph has been drawn up:

stabilized signal-BOD concen-

tration dependence (Fig. 4).
To draw up the calibration

graph, average outcome voltage
values of twelve measurements

were used. The BOD7; value of

standard solutions was also checked with the conventional BOD;
measurement method [B]. Results lay within the allowable error limit

(15-20 %). Deviation between different measurements was 5-10 %.

At low BOD values the signal increases significantly, but as the

concentration grows, the curve starts

to flatten because of saturation of

the catalysing capacities of the

bacteria. It means that the substrate

concentration remains stable inside

the biomembrane i.e. velocity of the

reaction is limiting step of the

process. The biosensor is usable in

the concentration range Wwhere

differences in the signal are

considerable. From the calibration

graph it can be seen that a biosensor

of this particular thickness (0.5 mm)
of membrane with immobilized

bacteria can be used in the BOD

range of 1-15mg/l. By using

Fig. 3. Measurement cell: 7 - stirring bar;
2 - biosensor;; 3 - test solution;
4 - thermostated waterbath; 5 - magnetic
stirrer

Fig. 4. Calibration graph for the BOD-

sensor
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In order to evaluate the

suitability of the BOD biosensor

for testing wastewaters

containing phenolic compo-

unds, measurements were car-

ried out with actual wastewaters

from the Kohtla-Jarve oil-shale

industry (Fig. 6) and compared
to the results estimated from the

calibration graph (Table 2).
Parallel measurements were

carried out by uüsing the

conventional method for BOD;
detection.

As it can be seen from

membranes of 0.3 mm thickness

the upper limit can be raised to

BOD; = 25-30 mg/1.

It was also important to

mspeet the vusability of the

biosensor in the phenolic test

environment. For this purpose

measurements were carried out in

a phenol solution (Fig. 5) where

BOD; had been measured using
the conventional method for

BOD determination. The results

were comparable with those

obtained from the calibration

graph (Table 1).

Table 2 the determination of BOD; from the sensor’s calibration curve

gives higher values compared to the

ones obtained using the standard

method. It might be connected with

the usage of inocculum prepared from

municipal sewage in the conventional

BOD7; determination. In the case

when inocculum is not adapted on the

Fig. 5. The dependence of biosensor’s

differential signal on the BOD value of

phenol solution

Biosensor’'s |BOD BOD

signal, mV conventional | calibration j
method, mg/l |curve, mg/l

2.8 1.7 2.0

4.4 3.5 - 3.9
5.6 5.2 5.8

6.5 7.0 7.7

7.2 8.7 9.5

7.6 10.4 11.3

8.0 12.2 13.0

8.2 14.0 14.8

8.4 15.7 16.5

T7able 1. Comparison of Results Evaluated

from the Calibration Curve and Obtained

by the Conventional BOD; Method

Fig. 6. The dependence of biosensor’s

signal on the BOD concentration of

wastewater
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wastewater containing phenolic compounds, lower BOD values can be

expected by conventional method in comparison with biosensor’s

method. j

Conclusions

The electrochemical biosensor has been constructed with immobilized

bacteria for BOD measurements. It can be widely utilized as a

monitoring device. It can also be used as a control device in biological
treatment plants.

The main characteristics of the sensor have been studied and found to

be satisfactory for monitoring purposes.

The biosensor’s main advantages are:

e results can be obtained in 15-30 minutes instead of 7 days required for

the conventional method

e it can in principle be used in situ

e it is cheap

e it is easy to handle

e it can be used repeatedly

A main drawback of the device is that BOD cannot usually be

measured directly in wastewaters but only. in its dilutions where the

appropriatt BOD range for the‘ 'biosensor %S ‘approximately
1-30 mg BOD/1.
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Biosensor’s signal, mV |BOD from conventional method, |BOD from calibration curve,

mg/1 mg/1

6.4 2.5 7.0

9.3 | 5.0 >20

Table 2. Comparison of Data from Conventional BOD; Measurements

and Calibration Curve
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