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The chemical composition and the toxicity ofsulphur rich phenolic leachates

(ash-heap water; AHW) was determined and impact of its main components

(phenolic and sulphuric compounds, heavy metals) and pH to the net foxicity
ofAHW was estimated. According to the analysis and calculations the toxicity
ofAHW was mainly caused by its phenolic and sulphuric compounds whereas

the main contributors were p-cresol (58 % of the toxicity), sulphide (22 %),

3,4-dimethylphenol (8.5 %) and phenol (5.6 %). The toxicity ofAHW and its

components was analyzed using Photobacterium phosphoreum - based

BioTox™™ ftest.

Introduction

Oil shale is among the most important natural resources in Estonia being
widely used in the chemical industry as well as in the production of

energy. The pollution of the environment caused by the oil-shale industry
is one of the major ecological problems for Estonia. Every year

approximately 1.35 million tons of solid waste (ash formed in the

retorting process of oil-shale) is deposited in big spent shale piles - ash

heaps. The leachates from the ash-heaps (so-called ash-heap water)
(3000-8000 m3/day) are discharged without treatment through rivers of

Kohtla and Purtse directly to the Gulf of Finland [l-4]. The ash-heap
water (AHW) is characterized by high pH (pH = 10-12), high
concentration of phenolic (up to 500 mg/L) and sulphuric compounds
(mainly in the form of sulphates, up to 1300 mg/L) and its composition
varies according to the weather conditions [l]. The AHW is not purified
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in the local biopurification facilities due to its (supposed) high toxicity to

the activated sludge. In our previous paper [s] we analyzed the phenolic
composition of AHW and determined the toxicity of AHW towards

photobacteria (using BioTox™ and Microtox™ tests) and activated

sludges, and showed that the biopurification of the AHW could be

feasible.

The toxicity of complex mixtures (e.g., AHW) depends on the

individual toxicities of its components and their concentration in the

mixture. Also, the individual components in the complex mixture can

exhibit antagonistic or synergistic effects (i.e. the overall toxicity of the

mixture could be lower or higher, respectively, than expected by the

summed toxic effects of its individual components).
In this work an attempt was made to take into account all the

potential toxicants of the AHW (e.g., phenolic and sulphuric compounds,

heavy metals) and to estimate their share in the net toxicity of AHW.

Luminescent bacteria (BioTox™) were used for the toxicity testing. For

the calculations an assumption was made that the toxic effects of

individual components in the mixture were additive.

Materials and Methods

Sampling of AHW

AHW for this study was sampled from the equalization basin of AHW on

the territory of “Kiviter” Ltd. (Kohtla-Jarve, Estonia) on 07.03.95. AHW

(pH = 10) was stored in glass bottles at +4 °C in the dark.

Chemical Analysis of AHW

The HPLC and GC-MS analysis of phenolic composition of AHW was

ordered from Central Laboratory of Environmental Research (Tallinn,
Estonia). Heavy metals from AHW were kindly determined by
Dr. A. Viitak (Tallinn Technical University, Estonia) using atomic

adsorption spectroscopy (AAS). Total sulphur content in AHW was

determined gravimetrically after oxidation of all sulphur compounds to

sulphate and precipitation by barium chloride [6]. Sulphide, sulphite and

thiosulphate were determined iodometrically [6] as described by Lure and

Robnikova [7]. The concentration of sulphate was calculated as a

difference between the total sulphur and the sum of sulphide, sulphite
and thiosulphate.

Chemicals

Phenol, o-, m- and p-cresol and 3,4-dimethylphenol were purchased
from Merck; 2,6-dimethylphenol and 2,3-dimethylphenol from Ferak.
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Na,S, Na,SOO;, Na,SO4 and Na,;S,O3 were of Russian origin (purity:
chemically clean). Na;S-9H,0 was semi-aqueous solution and

concentration of Na,S in it was determined iodometrically [6].

Toxicity Testing

The BioTox™ reagent was reconstituted and measurement of toxicity
was performed essentially as described by us previously [B-9]. Control

samples (i.e., bacterial suspensions to which 2 % NaCl was added

instead of a test chemical) were always run parallel to the test sample.
Tests were performed at 15 °C. As the pH of all dissolved chemicals and

diluted AHW analyzed in this study was 5-8, it was not adjusted. The

concentration of the toxicant (mg/L) which caused a 50 % reduction in

light (INH % = 50 %) after exposure for 5 minutes was designated as the

5-min EC 50. In the case of AHW the concentration of AHW in the test

(%) which caused a 50 % reduction in light (INH % =SO %) after

exposure for 5 minutes was designated as the 5-min EC 50.

Results and Discussion

Table 1 characterizes the ash-heap water (AHW) sampled for this study.
The more detailed information on the concentrations of individual

phenolic and sulphuric compounds is presented in Table 2.

Table 1 shows that the toxicity of AHW could be caused by high
concentration of phenolic and sulphuric compounds, presence of heavy
metals and also by high pH. However, the AHW had very low buffering
capacity: already after 3-fold dilution with deionized water the pH of the

AHW was neutral (pH = 7). Hence, already after minor dilution the

toxic effect of pH of the AHW could be excluded.

Parameter Method of analysis Value or

characterization

Colour Visual Brownish

Smell Organoleptic Phenols and sulphur
pH pH-meter 10
COD Potassium bichromate 3070 mg O, /L
Total heavy metals*! AAS 0.5 mg/L
Total phenolic compounds*2 |HPLC 194.9 mg/L
Total sulphur compounds*?2 Total sulphur compounds -

gravimetrically; 2400 mg/L
Sulphide, thiosulphate and

sulphite - iodometrically
Toxicity (5-min EC 50) BioTox™ test 1.5 %

Notes: *! mg/L: Fe - 0.4; Mn - 0.08; Zn - 0.02; Cu - 0.01; Cr - 0.02; Ni
- 0.001; Co - 0.001;

Mo - 0.001; Pb - 0.003; Cd < 0.0003 and Hg < 0.001.
*2 See also Table 2.

Table 1. Characterization of the Ash-Heap Water (AHW)
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The toxicological impact of a certain chemical could be determined by

calculating its TI value (TI = theoretical impact): -

TI = [C]/EC 50

where [C] - concentration of the chemical, mg/L
EC 50 - toxicity of this chemical (mg/L), determined using
a biotest (in our case, BioTox™ test)

By calculating the TI values for heavy metals (the respective EC 50

values were taken from our previous articles [B-9]) it was shown that the

concentration of heavy metals in the AHW was too low to cause toxicity:
the sum of the TI values of heavy metals in the AHW was 0.1 (data not

shown) that is very small compared by to the sum of TI values of

phenolic and sulphuric compounds in the AHW (Total TI = 14.0;
Table 2). Hence, also the impact of heavy metals to the overall toxicity of

the AHW could be considered negligible.

Component Concentration |Toxicity according to BioTox™ test

ofthe AHW in the AHW

mg/L |% 5-min EC 50 |Theoretical Relative

of the pure impact (TT) of |theoretical

| compound, the individual |impact (RTT),
mg/L component to |%

(BioTox™) |the net toxicity
ofAHW

el m e
Phenolic compounds

Phenol 84.1 3.2 107 .4 0.8 5.6

p-Cresol 70.4 2.7 8.7 8.1 58.0

m-Cresol 17.2 0.7 108.2 0.2 1.1

0-Cresol 8.5 0.3 63.1 0.1 1.0

3,4-Dimethylphenol 7.7 0.3 6.5 1.2 8.5

2,6- Dimethylphenol 4.4 0.2 41.8 0.1 0.7

2,3- Dimethylphenol 2.8 0.1 25.5 0.1 0.8

Sulphuric compounds

SO42- 1676.0| 64.5 11155*! 0.2 1.1

S,032 7054 | 27.1 3777%2 0.2 1.3

S2- 22.2 0.9 7.3*3 3.0 22

S0
-|O]00| 33834

|

00]00
Total| 2599 100 14.0 100

Notes: *!determined as NaySOy.
*2 determined as Na;$,0;3.
*3 determined as Na;S.
*4 determined as Na;SOs.

Table 2. Concentration and Toxicity of Phenolic and Sulphuric Compounds
Found in the Ash-Heap Water Sampled for this Study
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Table 2 shows that AHW contained altogether 7 different phenolic

compounds whereas the most abundant components were phenol
(84.1 mg/L) and p-cresol (70.4 mg/L). The total amount of phenolic
compounds was 194.9 mg/L (Table 1). All the phenols detected were

monohydroxyphenols. The absence of dihydroxyphenols in the current

sample of AHW (proven also by GC-MS; data not shown) is a bit

unusual for AHW that has wusually shown to contain also

dihydroxyphenols (e.g., resorcinols) [l]. However, the prevalence of

monohydroxyphenols over dihydroxyphenols in AHW has also shown by
Munter et al. [2] and Tuhkanen [lo] and, as mentioned above, the

chemical composition of the AHW could be dependent on the season

and the amount of atmospheric precipitation [l]. Also, it is quite
peculiar, that the amount of p-cresol in the AHW sampled for this study
was higher than that of m-cresol (Table 2), as in the oil shale process

water (used for compacting of the ash on the spent shale piles) the

amount of m-cresol exceeds that of p-cresol [ll].
From the sulphuric compounds (altogether 2400 mg/L; Table 1) the

most abundant was sulphate (1676 mg/L) followed by thiosulphate

(705 mg/L) and sulphide (22 mg/L). Sulphite was not found (Table 2). If

the data on phenolic and sulphuric compounds were summarized then

the results were following: the highest impact by weight (%) had sulphate
(65 %), followed by thiosulphate (27 %), phenol (3.2 %) and p-cresol

(2.7 %) (Table 2). Hence, at the first glance it could be supposed that the

main ecological problems connected with the AHW are caused by these

four chemicals. However, from the point of view of environmental

protection the ultimate goal is to avoid/reduce the toxicity. Hence, both,
the amount and the toxicity of respective waste should be taken into

account.

The most toxic compounds according to the BioTox™ test were

3,4-dimethylphenol (5-min EC 50 = 6.5 mg/L), followed by sulphide
(5-min EC 50 = 7.3 mg/L) and p-cresol (5-min EC 50 = 8.7 mg/L)
(Table 2). In Table 2 the theoretical impact (TT) and relative theoretical

impact (RTI) of every phenolic and sulphuric component to the net

toxicity of the AHW is calculated. As mentioned above, in our

calculations additive toxicity of individual components of the mixture was

assumed. According to these calculations (Table 2) the highest
toxicological impact to the net toxicity of AHW had p-cresol (58 % of

the toxicity of AHW), followed by sulphide (22 %), 3.4-dimethylphenol
(8.5%) and phenol (5.6 %). Hence, due to the high toxicity
(5-min EC 50 = 6.5 mg/L) the toxic impact of 3,4-dimethylphenol was

higher than that of phenol despite of the fact that phenol was present in

AHW in 10-times higher concentration than 3,4-DMP. Analogously,
concentration of sulphide in AHW was 75-fold lower than that of

sulphate, but due to the high toxicity of sulphide compared to sulphate
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the toxicological impacts of these sulphur compounds were 22 % and

1 %, respectively (Table 2).
Table 3 summarizes the results of this work: 75% of the

ecotoxicological risk of the AHW could be incriminated to phenolic
compounds (mainly to p-cresol, 3.4-dimethylphenol and phenol) and

25 % to the sulphuric compounds (mainly to sulphide).

As it was mentioned above, in our calculations it was supposed that

the toxicity of the mixture was the sum of the toxicities of its individual

components (i.e. additive toxicity was assumed). If the AHW was tested

for the toxicity using BioTox™ test its 5-min EC 50 value was 1.5 %. As

according to the sum of TI values of phenolic and sulphur components of

the AHW (14.0; Table 2) the theoretical toxicity of AHW according to

the calculations ought to be 100 %/14 = about 7 % and not 1.5 %
obtained by us experimentally. It could be supposed that:

(i) there were some (minor) toxic components in the AHW that were not

detected by the chemical methods used in this study, or,

(ii) the toxicities of individual components were not additive, but

synergistic effects occurred.
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Component that could cause | Value or amount | Impact to the net toxicity of AHW

toxicity of AHW (according to BioTox™ test)

pH 10 Negligible

Heavy metals 0.5 mg/L Negligible

Phenolic compounds: 195 mg/L 75 %

The highest impact The highest impact

on weight basis, mg/L: on toxicitybasis, %:

Phenol - 84 p-Cresol - 58

p-Cresol - 70 3,4-Dimethylphenol - 8.5

Phenol - 5.6

Sulphuric compounds: 2400 mg/L 25 %

The highest impact The highest impact
on weight basis, mg/L: on toxicity basis, %:

Sulphate - 1700

Thiosulphate - 700

Sulphide - 22 Sulphide - 22

Table 3. The Analysis of Impact of Different Factors to the Toxicity
of AHW Sampled for this Study (Data are Summarized from Tables 1 and 2)
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